首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
An extension of the capacitated vehicle routing problem is studied in this paper. In this version the difference between the individual route lengths is minimized simultaneously with the total length. The drivers’ workload and perhaps, income, may be affected by the route lengths; so adding this objective makes the problem closer to real-life than the original, single-objective problem. A heuristic based on GRASP is used to obtain an approximation of the Pareto set. The proposed heuristic is tested on instances from the literature, obtaining good approximations of the Pareto set.  相似文献   

2.
This paper addresses multi-depot location arc routing problems with vehicle capacity constraints. Two mixed integer programming models are presented for single and multi-depot problems. Relaxing these formulations leads to other integer programming models whose solutions provide good lower bounds for the total cost. A powerful insertion heuristic has been developed for solving the underlying capacitated arc routing problem. This heuristic is used together with a novel location–allocation heuristic to solve the problem within a simulated annealing framework. Extensive computational results demonstrate that the proposed algorithm can find high quality solutions. We also show that the potential cost saving resulting from adding location decisions to the capacitated arc routing problem is significant.  相似文献   

3.
Alt?nel and Öncan (2005) (A new enhancement of the Clarke and Wrightsavings heuristic for the capacitated vehicle routing problem) proposed aparametric Clarke and Wright heuristic to solve the capacitated vehicle routingproblem (CVRP). The performance of this parametric heuristic is sensitive tofine-tuning. Antinel and Öncan used an enumerative parameter-settingapproach and improved on the results obtained with the original Clarke andWright heuristic, but their approach requires much more computation time tosolve an instance. Battarra et al (2008) (Tuning a parametricClarke–Wright heuristic through a genetic algorithm) proposed a geneticalgorithm to set the parameter values. They succeeded in reducing the timeneeded to solve an instance, but the quality of the solution was slightly worse.In this paper, we propose to use the EAGH (empirically adjusted greedyheuristics) procedure to set the parameter values. A computational experimentshows the efficiency of EAGH; in an even shorter time, we improve on the bestresults obtained with any parametric Clarke and Wright heuristic method proposedin the literature.  相似文献   

4.
The arc routing problem involves the total distance covered in traversing a certain number of arcs in a network. In the capacitated version of this problem of a finite capacity is associated with each vehicle. In this paper we introduce a new approximate solution strategy for the capacitated arc routing problem (CARP). This strategy usesd an insertion procedure to generate many routes in parallel. The purpose is to obtain a better balance between the costs of each route. Computational results are reported.  相似文献   

5.
We consider a generalization of the capacitated vehicle routing problem known as the cumulative vehicle routing problem in the literature. Cumulative VRPs are known to be a simple model for fuel consumption in VRPs. We examine four variants of the problem, and give constant factor approximation algorithms. Our results are based on a well-known heuristic of partitioning the traveling salesman tours and the use of the averaging argument.  相似文献   

6.
采用人工蜂群算法对配送中心选址问题进行求解,给出食物源的编码方法,通过整数规范化,使算法能在整数空间内对问题进行求解.应用算法进行了仿真实验,并将结果与其它一些启发式算法进行了比较和分析.计算结果表明人工蜂群算法可以有效求解配送中心选址问题,同时也为算法求解其它一些组合优化问题提供了有益思路.  相似文献   

7.
This paper introduces the pyramidal capacitated vehicle routing problem (PCVRP) as a restricted version of the capacitated vehicle routing problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the pyramidal traveling salesman problem (PTSP). A pyramidal route is defined as a route on which the vehicle first visits customers in increasing order of customer index, and on the remaining part of the route visits customers in decreasing order of customer index.  相似文献   

8.
本文提出一种带时间窗和容量约束的车辆路线问题(CVRPTW),并利用Tabu Search快速启式算法,针对Solomon提出的几个标准问题,快捷地得到了优良的数值结果。  相似文献   

9.
In open vehicle routing problems, the vehicles are not required to return to the depot after completing service. In this paper, we present the first exact optimization algorithm for the open version of the well-known capacitated vehicle routing problem (CVRP). The algorithm is based on branch-and-cut. We show that, even though the open CVRP initially looks like a minor variation of the standard CVRP, the integer programming formulation and cutting planes need to be modified in subtle ways. Computational results are given for several standard test instances, which enables us for the first time to assess the quality of existing heuristic methods, and to compare the relative difficulty of open and closed versions of the same problem.  相似文献   

10.
The vehicle routing problem (VRP) with simultaneous pickup and delivery (VRPSPD) is an extension of the classical capacitated VRP (CVRP). In this paper, we present the saving heuristic and the parallel saving heuristic for VRPSPD. Checking the feasibility of a route in VRPSPD is difficult because of the fluctuating load on the route. In the saving heuristic, a new route is created by merging the two existing routes. We use a cumulative net-pickup approach for checking the feasibility when two existing routes are merged. The numerical results show that the performance of the proposed heuristics is qualitatively better than the existing insertion-based heuristics.  相似文献   

11.
We describe a solution procedure for a capacitated arc routing problem with refill points and multiple loads. This problem stems from the road network marking in Quebec, Canada. Two different types of vehicles are used: the first type (called servicing vehicle—SV) with a finite capacity to service the arcs and the other (called refilling vehicle—RV) to refill the SV vehicle.The RV can deliver multiple loads, which means that it meets the SV several times before returning to the depot. The problem consists of simultaneously determining the vehicle routes that minimize the total cost of the two vehicles.We present an integer formulation and a route first-cluster second heuristic procedure. Computational results are provided.  相似文献   

12.
The vehicle routing problem with backhaul (VRPB) is an extension of the capacitated vehicle routing problem (CVRP). In VRPB, there are linehaul as well as backhaul customers. The number of vehicles is considered to be fixed and deliveries for linehaul customers must be made before any pickups from backhaul customers. The objective is to design routes for the vehicles so that the total distance traveled is minimized. We use multi-ant colony system (MACS) to solve VRPB which is a combinatorial optimization problem. Ant colony system (ACS) is an algorithmic approach inspired by foraging behavior of real ants. Artificial ants are used to construct a solution by using pheromone information from previously generated solutions. The proposed MACS algorithm uses a new construction rule as well as two multi-route local search schemes. An extensive numerical experiment is performed on benchmark problems available in the literature.  相似文献   

13.
在电子商务终端物流配送方面,存在能力与需求的矛盾。一方面,电动车存在货物容量约束和电池电量约束,配送能力有限;另一方面,一个物流配送点需要为众多的消费者进行门到门的配送,配送任务繁重。针对电子商务环境下终端物流配送规模大、电动车货物容量和行驶里程有限的问题,建立电商终端物流配送的电动车配置与路径规划集成优化模型,并提出一种基于临近城市列表的双策略蚁群算法,实现物流配送电动车辆配置与配送路径集成优化。该模型以电动车辆数最少和总路径最短为目标,以电动车货物容量和电池续航里程为约束,是带容量的车辆路径问题的进一步扩展,属于双容量约束路径规划问题。双策略蚁群算法在货物容量和续航里程的约束下,将蚁群搜索策略分为两类,即基于临近城市列表的局部搜索策略和全局搜索策略,在提高搜索效率的同时防止陷入局部优化。最后,通过阿里巴巴旗下菜鸟网络科技有限公司在上海的30组真实配送数据进行了测试,验证双策略蚁群算法显著优于一般蚁群算法。  相似文献   

14.
This paper introduces a bi-objective turning restriction design problem (BOTRDP), which aims to simultaneously improve network traffic efficiency and reduce environmental pollution by implementing turning restrictions at selected intersections. A bi-level programming model is proposed to formulate the BOTRDP. The upper level problem aims to minimize both the total system travel time (TSTT) and the cost of total vehicle emissions (CTVE) from the viewpoint of traffic managers, and the lower level problem depicts travelers’ route choice behavior based on stochastic user equilibrium (SUE) theory. The modified artificial bee colony (ABC) heuristic is developed to find Pareto optimal turning restriction strategies. Different from the traditional ABC heuristic, crossover operators are captured to enhance the performance of the heuristic. The computational experiments show that incorporating crossover operators into the ABC heuristic can indeed improve its performance and that the proposed heuristic significantly outperforms the non-dominated sorting genetic algorithm (NSGA) even if different operators are randomly chosen and used in the NSGA as in our proposed heuristic. The results also illustrate that a Pareto optimal turning restriction strategy can obviously reduce the TSTT and the CTVE when compared with those without implementing the strategy, and that the number of Pareto optimal turning restriction designs is smaller when the network is more congested but greater network efficiency and air quality improvement can be achieved. The results also demonstrate that traffic information provision does have an impact on the number of Pareto optimal turning restriction designs. These results should have important implications on traffic management.  相似文献   

15.
This work deals with a new combinatorial optimization problem, the two-dimensional loading capacitated vehicle routing problem with time windows which is a realistic extension of the well known vehicle routing problem. The studied problem consists in determining vehicle trips to deliver rectangular objects to a set of customers with known time windows, using a homogeneous fleet of vehicles, while ensuring a feasible loading of each vehicle used. Since it includes NP-hard routing and packing sub-problems, six heuristics are firstly designed to quickly compute good solutions for realistic instances. They are obtained by combining algorithms for the vehicle routing problem with time windows with heuristics for packing rectangles. Then, a Memetic algorithm is developed to improve the heuristic solutions. The quality and the efficiency of the proposed heuristics and metaheuristic are evaluated by adding time windows to a set of 144 instances with 15–255 customers and 15–786 items, designed by Iori et al. (Transport Sci 41:253–264, 2007) for the case without time windows.  相似文献   

16.
The Vehicle Routing Problem with Backhauls is a generalization of the ordinary capacitated vehicle routing problem where goods are delivered from the depot to the linehaul customers, and additional goods are brought back to the depot from the backhaul customers. Numerous ways of modeling the backhaul constraints have been proposed in the literature, each imposing different restrictions on the handling of backhaul customers. A survey of these models is presented, and a unified model is developed that is capable of handling most variants of the problem from the literature. The unified model can be seen as a Rich Pickup and Delivery Problem with Time Windows, which can be solved through an improved version of the large neighborhood search heuristic proposed by Ropke and Pisinger [An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows, Technical Report, DIKU, University of Copenhagen, 2004]. The results obtained in this way are comparable to or improve on similar results found by state of the art heuristics for the various variants of the problem. The heuristic has been tested on 338 problems from the literature and it has improved the best known solution for 227 of these. An additional benefit of the unified modeling and solution method is that it allows the dispatcher to mix various variants of the Vehicle Routing Problem with Backhauls for the individual customers or vehicles.  相似文献   

17.
Cumulative capacitated vehicle routing problem (CCVRP) is an extension of the well-known capacitated vehicle routing problem, where the objective is minimization of sum of the arrival times at nodes instead of minimizing the total tour cost. This type of routing problem arises when a priority is given to customer needs or dispatching vital goods supply after a natural disaster. This paper focuses on comparing the performances of neighbourhood and population-based approaches for the new problem CCVRP. Genetic algorithm (GA), an evolutionary algorithm using particle swarm optimization mechanism with GA operators, and tabu search (TS) are compared in terms of required CPU time and obtained objective values. In addition, a nearest neighbourhood-based initial solution technique is also proposed within the paper. To the best of authors’ knowledge, this paper constitutes a base for comparisons along with GA, and TS for further possible publications on the new problem CCVRP.  相似文献   

18.
We study the General Routing Problem defined on a mixed graph and with stochastic demands. The problem under investigation is aimed at finding the minimum cost set of routes to satisfy a set of clients whose demand is not deterministically known. Since each vehicle has a limited capacity, the demand uncertainty occurring at some clients affects the satisfaction of the capacity constraints, that, hence, become stochastic. The contribution of this paper is twofold: firstly we present a chance-constrained integer programming formulation of the problem for which a deterministic equivalent is derived. The introduction of uncertainty into the problem poses severe computational challenges addressed by the design of a branch-and-cut algorithm, for the exact solution of limited size instances, and of a heuristic solution approach exploring promising parts of the search space. The effectiveness of the solution approaches is shown on a probabilistically constrained version of the benchmark instances proposed in the literature for the mixed capacitated general routing problem.  相似文献   

19.
The open vehicle routing problem (VRP) is an immediate variant of the standard vehicle routing problem where the vehicle need not return to the depot after servicing its last customer. In this paper, we present results on an implementation of the attribute-based hill climber heuristic to the open VRP. The attribute-based hill climber heuristic is a parameter-free variant of the tabu search principle and has shown to be highly effective for the standard vehicle routing problem.  相似文献   

20.
In this paper, we consider the open vehicle routing problem with time windows (OVRPTW). The OVRPTW seeks to find a set of non-depot returning vehicle routes, for a fleet of capacitated vehicles, to satisfy customers’ requirements, within fixed time intervals that represent the earliest and latest times during the day that customers’ service can take place. We formulate a comprehensive mathematical model to capture all aspects of the problem, and incorporate in the model all critical practical concerns. The model is solved using a greedy look-ahead route construction heuristic algorithm, which utilizes time windows related information via composite customer selection and route-insertion criteria. These criteria exploit the interrelationships between customers, introduced by time windows, that dictate the sequence in which vehicles must visit customers. Computational results on a set of benchmark problems from the literature provide very good results and indicate the applicability of the methodology in real-life routing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号