首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conventional two-stage data envelopment analysis (DEA) models measure the overall performance of a production system composed of two stages (processes) in a specified period of time, where variations in different periods are ignored. This paper takes the operations of individual periods into account to develop a multi-period two-stage DEA model, which is able to measure the overall and period efficiencies at the same time, with the former expressed as a weighted average of the latter. Since the efficiency of a two-stage system in a period is the product of the two process efficiencies, the overall efficiency of a decision making unit (DMU) in the specified period of time can be decomposed into the process efficiency of each period. Based on this decomposition, the sources of inefficiency in a DMU can be identified. The efficiencies measured from the model can also be used to calculate a common-weight global Malmquist productivity index (MPI) between two periods, in that the overall MPI is the product of the two process MPIs. The non-life insurance industry in Taiwan is used to verify the proposed model, and to explain why some companies performed unsatisfactorily in the specified period of time.  相似文献   

2.
Data envelopment analysis (DEA) is a useful tool of efficiency measurement for firms and organizations. Kao and Hwang (2008) take into account the series relationship of the two sub-processes in a two-stage production process, and the overall efficiency of the whole process is the product of the efficiencies of the two sub-processes. To find the largest efficiency of one sub-process while maintaining the maximum overall efficiency of the whole process, Kao and Hwang (2008) propose a solution procedure to accomplish this purpose. Nevertheless, one needs to know the overall efficiency of the whole process before calculating the sub-process efficiency. In this note, we propose a method that is able to find the sub-process and overall efficiencies simultaneously.  相似文献   

3.
The efficiency of decision processes which can be divided into two stages has been measured for the whole process as well as for each stage independently by using the conventional data envelopment analysis (DEA) methodology in order to identify the causes of inefficiency. This paper modifies the conventional DEA model by taking into account the series relationship of the two sub-processes within the whole process. Under this framework, the efficiency of the whole process can be decomposed into the product of the efficiencies of the two sub-processes. In addition to this sound mathematical property, the case of Taiwanese non-life insurance companies shows that some unusual results which have appeared in the independent model do not exist in the relational model. In other words, the relational model developed in this paper is more reliable in measuring the efficiencies and consequently is capable of identifying the causes of inefficiency more accurately. Based on the structure of the model, the idea of efficiency decomposition can be extended to systems composed of multiple stages connected in series.  相似文献   

4.
Data envelopment analysis (DEA) is a linear programming problem approach for evaluating the relative efficiency of peer decision making units (DMUs) that have multiple inputs and outputs. DMUs can have a two-stage structure where all the outputs from the first stage are the only inputs to the second stage, in addition to the inputs to the first stage and the outputs from the second stage. The outputs from the first stage to the second stage are called intermediate measures. This paper examines relations and equivalence between two existing DEA approaches that address measuring the performance of two-stage processes.  相似文献   

5.
Additive efficiency decomposition in two-stage DEA   总被引:1,自引:0,他引:1  
Kao and Hwang (2008) [Kao, C., Hwang, S.-N., 2008. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European Journal of Operational Research 185 (1), 418–429] develop a data envelopment analysis (DEA) approach for measuring efficiency of decision processes which can be divided into two stages. The first stage uses inputs to generate outputs which become the inputs to the second stage. The first stage outputs are referred to as intermediate measures. The second stage then uses these intermediate measures to produce outputs. Kao and Huang represent the efficiency of the overall process as the product of the efficiencies of the two stages. A major limitation of this model is its applicability to only constant returns to scale (CRS) situations. The current paper develops an additive efficiency decomposition approach wherein the overall efficiency is expressed as a (weighted) sum of the efficiencies of the individual stages. This approach can be applied under both CRS and variable returns to scale (VRS) assumptions. The case of Taiwanese non-life insurance companies is revisited using this newly developed approach.  相似文献   

6.
In the real world there are systems which are composed of independent production units. The conventional data envelopment analysis (DEA) model uses the sum of the respective inputs and outputs of all component units of a system to calculate its efficiency. This paper develops a parallel DEA model which takes the operation of individual components into account in calculating the efficiency of the system. A property owned by this parallel model is that the inefficiency slack of the system can be decomposed into the inefficiency slacks of its component units. This helps the decision maker identify inefficient components and make subsequent improvements. Another property is that the efficiency calculated from this model is smaller than that calculated from the conventional DEA model. Few systems will have perfect efficiency score; consequently, a stronger discrimination power is gained. In addition to theoretical derivations, a case of the national forests of Taiwan is used as an example to illustrate the whole idea.  相似文献   

7.
The constant returns to scale assumption maintained by neoclassical theorists for justifying the black-box structure of production technology in long run does not necessarily allow one to infer that there are no scale benefits available in its sub-technologies. Most of real-life production technologies are multi-stage in nature, and the sources of increasing returns lie in the sub-technologies. It is, therefore, imperative to estimate the scale economies of a firm not only for the network technology but also for the sub-technologies. To accomplish this, two approaches are suggested in this contribution, based on the premise concerning whether a network technology construct considers allocative inefficiency. The first approach, which is ours, makes use of a single network technology for two interdependent sub-technologies. The second approach, which is due to Kao and Hwang (2011), however, assumes complete allocative efficiency by considering two independent sub-technology frontiers, one for each sub-technology. The distinction between these two approaches is important from a policy point of view since the network efficiencies revealed from these two approaches have distinctive causative factors that do not permit them to be used interchangeably.  相似文献   

8.
Data envelopment analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs), where the internal structures of DMUs are treated as a black-box. Recently DEA has been extended to examine the efficiency of DMUs that have two-stage network structures or processes, where all the outputs from the first stage are intermediate measures that make up the inputs to the second stage. The resulting two-stage DEA model not only provides an overall efficiency score for the entire process, but also yields an efficiency score for each of the individual stages. The current paper develops a Nash bargaining game model to measure the performance of DMUs that have a two-stage structure. Under Nash bargaining theory, the two stages are viewed as players and the DEA efficiency model is a cooperative game model. It is shown that when only one intermediate measure exists between the two stages, our newly developed Nash bargaining game approach yields the same results as applying the standard DEA approach to each stage separately. Two real world data sets are used to demonstrate our bargaining game model.  相似文献   

9.
Data envelopment analysis (DEA) allows us to evaluate the relative efficiency of each of a set of decision-making units (DMUs). However, the methodology does not permit us to identify specific sources of inefficiency because DEA views the DMU as a “black box” that consumes a mix of inputs and produces a mix of outputs. Thus, DEA does not provide a DMU manager with insight regarding the internal source of the organization’s inefficiency.  相似文献   

10.
In this note we derive alternative weighting schemes that complement those of Färe and Zelenyuk (2003) for consistent aggregation of Farrell efficiencies when the technology exhibits (global) constant returns to scale.  相似文献   

11.
In the additive approach of two-stage network data envelopment analysis (DEA), the non-linear DEA model is transformed into a parametric linear model and then solved by computing a series of linear programs. Lim and Zhu (2013; Integrated data envelopment analysis: Global vs. local optimum.European Journal of Operational Research, 229(1), 276–278) and Ang and Chen (2016; Pitfalls of decomposition weights in the additive multi-stage DEA model. Omega, 58, 139–153) propose two parametric linear approaches to solve additive two-stage network DEA model. The current study shows that the two approaches are equivalent and use the same parameter in searching for the global optimal solution.  相似文献   

12.
DEA model with shared resources and efficiency decomposition   总被引:2,自引:0,他引:2  
Data envelopment analysis (DEA) has proved to be an excellent approach for measuring performance of decision making units (DMUs) that use multiple inputs to generate multiple outputs. In many real world scenarios, DMUs have a two-stage network process with shared input resources used in both stages of operations. For example, in hospital operations, some of the input resources such as equipment, personnel, and information technology are used in the first stage to generate medical record to track treatments, tests, drug dosages, and costs. The same set of resources used by first stage activities are used to generate the second-stage patient services. Patient services also use the services generated by the first stage operations of housekeeping, medical records, and laundry. These DMUs have not only inputs and outputs, but also intermediate measures that exist in-between the two-stage operations. The distinguishing characteristic is that some of the inputs to the first stage are shared by both the first and second stage, but some of the shared inputs cannot be conveniently split up and allocated to the operations of the two stages. Recognizing this distinction is critical for these types of DEA applications because measuring the efficiency of the production for first-stage outputs can be misleading and can understate the efficiency if DEA fails to consider that some of the inputs generate other second-stage outputs. The current paper develops a set of DEA models for measuring the performance of two-stage network processes with non splittable shared inputs. An additive efficiency decomposition for the two-stage network process is presented. The models are developed under the assumption of variable returns to scale (VRS), but can be readily applied under the assumption of constant returns to scale (CRS). An application is provided.  相似文献   

13.
    
Data envelopment analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs). Recently DEA has been extended to examine the efficiency of two-stage processes, where all the outputs from the first stage are intermediate measures that make up the inputs to the second stage. The resulting two-stage DEA model provides not only an overall efficiency score for the entire process, but as well yields an efficiency score for each of the individual stages. Due to the existence of intermediate measures, the usual procedure of adjusting the inputs or outputs by the efficiency scores, as in the standard DEA approach, does not necessarily yield a frontier projection. The current paper develops an approach for determining the frontier points for inefficient DMUs within the framework of two-stage DEA.  相似文献   

14.
One of the most important steps in the application of modeling using data envelopment analysis (DEA) is the choice of input and output variables. In this paper, we develop a formal procedure for a “stepwise” approach to variable selection that involves sequentially maximizing (or minimizing) the average change in the efficiencies as variables are added or dropped from the analysis. After developing the stepwise procedure, applications from classic DEA studies are presented and the new managerial insights gained from the stepwise procedure are discussed. We discuss how this easy to understand and intuitively sound method yields useful managerial results and assists in identifying DEA models that include variables with the largest impact on the DEA results.  相似文献   

15.
Conventional data envelopment analysis (DEA) models only consider the inputs supplied to the system and the outputs produced from the system in measuring efficiency, ignoring the operations of the internal processes. The results thus obtained sometimes are misleading. This paper discusses the efficiency measurement and decomposition of general multi-stage systems, where each stage consumes exogenous inputs and intermediate products (produced from the preceding stage) to produce exogenous outputs and intermediate products (for the succeeding stage to use). A relational model is developed to measure the system and stage efficiencies at the same time. By transforming the system into a series of parallel structures, the system efficiency is decomposed into the product of a modification of the stage efficiencies. Efficiency decomposition enables decision makers to identify the stages that cause the inefficiency of the system, and to effectively improve the performance of the system. An example of an electricity service system is used to explain the idea of efficiency decomposition.  相似文献   

16.
This paper proposes a dynamic data envelopment analysis (DEA) model to measure the system and period efficiencies at the same time for multi-period systems, where quasi-fixed inputs or intermediate products are the source of inter-temporal dependence between consecutive periods. A mathematical relationship is derived in which the complement of the system efficiency is a linear combination of those of the period efficiencies. The proposed model is also more discriminative than the existing ones in identifying the systems with better performance. Taiwanese forests, where the forest stock plays the role of quasi-fixed input, are used to illustrate this approach. The results show that the method for calculating the system efficiency in the literature produces over-estimated scores when the dynamic nature is ignored. This makes it necessary to conduct a dynamic analysis whenever data is available.  相似文献   

17.
Data envelopment analysis is a mathematical programming technique for identifying efficient frontiers for peer decision making units with multiple inputs and multiple outputs. These performance factors (inputs and outputs) are classified into two groups: desirable and undesirable. Obviously, undesirable factors in production process should be reduced to improve the performance. In the current paper, we present a data envelopment analysis (DEA) model in which can be used to improve the relative performance via increasing undesirable inputs and decreasing undesirable outputs.  相似文献   

18.
One problem that has been discussed frequently in data envelopment analysis (DEA) literature has been lack of discrimination in DEA applications, in particular when there are insufficient DMUs or the number of inputs and outputs is too high relative to the number of units. This is an additional reason for the growing interest in complete ranking techniques. In this paper a method for ranking extreme efficient decision making units (DMUs) is proposed. The method uses L(or Tchebycheff) Norm, and it seems to have some superiority over other existing methods, because this method is able to remove the existing difficulties in some methods, such as Andersen and Petersen [2] (AP) that it is sometimes infeasible. The suggested model is always feasible.  相似文献   

19.
In a recent paper by Li and Cheng [Li,S.K., Cheng, Y.S., 2007. Solving the puzzles of structural efficiency. European Journal of Operational Research 180(2), 713–722], they developed the shadow price model to solve the existing puzzles of structural efficiency theoretically. However, we observe that the optimal shadow price vector in the shadow price model by Li and Cheng (2007) is not always unique. As a result, the decomposition of the structural efficiency is arbitrarily generated, depending on the shadow price vector we choose. Finally, an example with multiple inputs and outputs is used to illustrate the phenomenon.  相似文献   

20.
Network data envelopment analysis (DEA) concerns using the DEA technique to measure the relative efficiency of a system, taking into account its internal structure. The results are more meaningful and informative than those obtained from the conventional black-box approach, where the operations of the component processes are ignored. This paper reviews studies on network DEA by examining the models used and the structures of the network system of the problem being studied. This review highlights some directions for future studies from the methodological point of view, and is inspirational for exploring new areas of application from the empirical point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号