首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the problem of scheduling a given number of jobs on a single machine to minimize total earliness and tardiness when family setup times exist. The paper proposes optimal branch-and-bound algorithms for both the group technology assumption and if the group technology assumption is removed. A heuristic algorithm is proposed to solve larger problems with the group technology assumption removed. The proposed algorithms were empirically evaluated on problems of various sizes and parameters. The paper also explores how the choice of procedure affects total earliness and tardiness if an implementation of lean production methods has resulted in a reduction in setup times. An important finding of these empirical investigations is that scheduling jobs by removing the group technology assumption can significantly reduce total earliness and tardiness.  相似文献   

2.
Yoon  Seunghwan  Lewis  Mark E. 《Queueing Systems》2004,47(3):177-199
We consider congestion control in a nonstationary queueing system. Assuming that the arrival and service rates are bounded, periodic functions of time, a Markov decision process (MDP) formulation is developed. We show under the infinite horizon discounted and average reward optimality criteria, for each fixed time, optimal pricing and admission control strategies are nondecreasing in the number of customers in the system. This extends stationary results to the nonstationary setting. Despite this result, the problem still seems intractable. We propose an easily implementable pointwise stationary approximation (PSA) to approximate the optimal policies, suggest a heuristic to improve the implementation of the PSA and verify its usefulness via a numerical study.  相似文献   

3.
We consider problems of inventory and admission control for make-to-stock production systems with perishable inventory and impatient customers. Customers may balk upon arrival (refuse to place orders) and renege while waiting (withdraw delayed orders) during stockouts. Item lifetimes and customer patience times are random variables with general distributions. Processing, setup, and customer inter-arrival times are however assumed to be exponential random variables. In particular, the paper studies two models. In the first model, the system suspends its production when its stock reaches a safety level and can resume later without incurring any setup delay or cost. In the second model, the system incurs setup delays and setup costs; during stockouts, all arriving customers are informed about anticipated delays and either balk or place their orders but cannot withdraw them later. Using results from the queueing literature, we derive expressions for the system steady-state probabilities and performance measures, such as profit from sales and costs of inventory, setups, and delays in filling customer orders. We use these expressions to find optimal inventory and admission policies, and investigate the impact of product lifetimes and customer patience times on system performance.  相似文献   

4.
Motivated by a real-life scheduling problem in a steel wire factory in China,this paper considers the single machine scheduling problem with sequence-dependent family setup times to minimize maximum lateness. In view of the NP-hard nature of the problem, structural (dominance and neighbourhood)properties of the problem are described and used in the tabu search algorithms to find optimal or near-optimal schedules. These proposed structural properties quickly exclude unpromising and/or non-improving neighbours from further search.Empirical results on the randomly generated and real-life problem instances from a factory in China show that the proposed heuristic algorithms utilizing the structural properties can obtain optimal or near optimal solutions with a reasonable computational effort.  相似文献   

5.
Although the problem of scheduling dynamic job shops is well studied, setup and changeover times are often assumed to be negligibly small and therefore ignored. In cases where the product mix changes occur frequently, setup and changeover times are of critical importance. This paper applies some known results from the study of multi-class single-server queues with setup and changeover times to develop an approximation for evaluating the performance of job shops. It is found that the product mix, setup and changeover times, and scheduling rules affect the performance significantly, in particular at high levels of machine utilisation. This approach could be used to determine the required level of flexibility of machines and to choose an appropriate scheduling policy such that production rates remain within acceptable limits for foreseeable changes in the product mix.  相似文献   

6.
We study the coordinated scheduling problem of hybrid batch production on a single batching machine and two-stage transportation connecting the production, where there is a crane available in the first-stage transportation that transports jobs from the warehouse to the machine and there is a vehicle available in the second-stage transportation to deliver jobs from the machine to the customer. As the job to be carried out is big and heavy in the steel industry, it is reasonable assumed that both the crane and the vehicle have unit capacity. The batching machine processes a batch of jobs simultaneously. Each batch occur a setup cost. The objective is to minimize the sum of the makespan and the total setup cost. We prove that this problem is strongly NP-hard. A polynomial time algorithm is proposed for a case where the job transportation times are identical on the crane or the vehicle. An efficient heuristic algorithm for the general problem is constructed and its tight worst-case bound is analyzed. In order to further verify the performance of the proposed heuristics, we develop a lower bound on the optimal objective function. Computational experiments show that the heuristic algorithm performs well on randomly generated problem instances.  相似文献   

7.
This paper proposes to investigate learning and forgetting effects on the problem of scheduling families of jobs on a single machine to minimize total completion time of jobs. A setup time is incurred whenever the single machine transfers job processing from a family to another family. To analyze the impact of learning and forgetting on this group scheduling problem, we structure three basic models and make some comparisons through computational experiments. The three models, including no forgetting, total forgetting and partial forgetting, assume that the processing time of a job is dependent on its position in a schedule. Some scheduling rules and a lower bound are derived in order to constitute our branch-and-bound algorithm for searching an optimal sequence. In addition, an efficient and simply-structured heuristic is also built to find a near-optimal schedule.  相似文献   

8.
The aim of this paper is to develop a scheduling policy oriented towards minimizing setup times in the made-to-order furniture industry. The task is treated as a dynamic job shop scheduling problem, with the exception that customers?? orders collected over a?specified period of time are combined into a?production plan and released together. A?simulation of a production flow based on technological routes of real subassemblies was performed. The proposed method of calculating a setup time eliminates the need to determine machine setup time matrices. Among the tested priority rules the best performance was observed in the case of the hierarchical rule that combines similar setup, the earliest due date and the shortest processing time. This rule allowed the setup time per operation to be reduced by 58?% compared to a combination of the earliest due date with the shortest setup and processing time rule and by over 70?% compared to the single shortest processing time rule.  相似文献   

9.
We study the dynamic admission control for a finite shared buffer with support of multiclass traffic under Markovian assumptions. The problem is often referred to as buffer sharing in the literature. From the linear programming (LP) formulation of the continuous-time Markov decision process (MDP), we construct a hierarchy of increasingly stronger LP relaxations where the hierarchy levels equal the number of job classes. Each relaxation in the hierarchy is obtained by projecting the original achievable performance region onto a polytope of simpler structure. We propose a heuristic policy for admission control, which is based on the theory of Marginal Productivity Index (MPI) and the Lagrangian decomposition of the first order LP relaxation. The dual of the relaxed buffer space constraint in the first order LP relaxation is used as a proxy to the cost of buffer space. Given that each of the decomposed queueing admission control problems satisfies the indexability condition, the proposed heuristic accepts a new arrival if there is enough buffer space left and the MPI of the current job class is greater than the incurred cost of buffer usage. Our numerical examples for the cases of two and eight job classes show the near-optimal performance of the proposed MPI heuristic.  相似文献   

10.
We formulate and analyze a dynamic scheduling problem for a class of transportation systems in a Markov Decision Process (MDP) framework. A transportation system is represented by a polling model consisting of a number of stations and a server with switch-over costs and constraints on its movement (the model we have analyzed is intended to emulate key features of an elevator system). Customers request service in order to be transported by the server from various arrival stations to a common destination station. The objective is to minimize a cost criterion that incorporates waiting costs at the arrival stations. Two versions of the basic problem are considered and structural properties of the optimal policy in each case are derived. It is shown that optimal scheduling policies are characterized by switching functions dependent on state information consisting of queue lengths formed at the arrival stations.  相似文献   

11.
A production scheduling problem for making plastic molds of hi-fi models is considered. The objective is to minimize the total machine makespan in the presence of due dates, variable lot size, multiple machine types, sequence dependent, machine dependent setup times, and inventory limits. Goal programming and load balancing are applied to select the set of machine types and assign mold types to machines, resulting in a set of single-machine scheduling problems. A mixed-integer program (MIP) is formulated for the general problem but could solve only small instances. A single-machine scheduling heuristic is designed to adopt a production sequence from a travelling salesman solution. The start time of every cycle is determined by a simplified MIP. Production cycles are defined to equalize the stockout times of mold types. A post-processing step reduces the number of setups in the last cycle. Results using real-life data are promising. Characteristics giving rise to high machine utilization are discussed.  相似文献   

12.
In studies on scheduling problems, generally setup times and removal times of jobs have been neglected or by including those into processing times. However, in some production systems, setup times and removal times are very important such that they should be considered independent from processing times. Since, in general jobs are done according to automatic machine processes in production systems processing times do not differ according to process sequence. But, since human factor becomes influential when setup times and removal times are taken into consideration, setup times will be decreasing by repeating setup processes frequently. This fact is defined with learning effect in scheduling literature. In this study, a bicriteria m-identical parallel machines scheduling problem with a learning effect of setup times and removal times is considered. The objective function of the problem is minimization of the weighted sum of total completion time and total tardiness. A mathematical programming model is developed for the problem which belongs to NP-hard class. Results of computational tests show that the proposed model is effective in solving problems with up to 15 jobs and five machines. We also proposed three heuristic approaches for solving large jobs problems. According to the best of our knowledge, no work exists on the minimization of the weighted sum of total completion time and total tardiness with a learning effect of setup times and removal times.  相似文献   

13.
Almost all of the research on the economic lot scheduling problem (ELSP) has assumed that setup times are sequence-independent even though sequence-dependent problems are common in practice. Furthermore, most of the solution approaches that have been developed solve for a single optimal schedule when in practice it is more important to provide managers with a range of schedules of different length and complexity. In this paper, we develop a heuristic procedure to solve the ELSP problem with sequence-dependent setups. The heuristic provides a range of solutions from which a manager can choose, which should prove useful in an actual stochastic production environment. We show that our heuristic can outperform Dobson's heuristic when the utilization is high and the sequence-dependent setup times and costs are significant.  相似文献   

14.
混合作业是经典的自由作业和异序作业的一种综合,其中一些工件可以按任意的机器顺序进行处理,而另一些工件必须遵守预先指定的机器顺序.本文研究安装、加工和拆卸时间分离的两台机器混合作业排序问题,该问题已经被知道是强NP困难的,本文把流水作业中的同顺序作业概念推广到混合作业,并得到这个混合作业问题在同顺序意义下的最优解,这个解对于一般情形是3/2近似解,但对于一些有意义的特殊情形是整体最优的.  相似文献   

15.
《Applied Mathematical Modelling》2014,38(7-8):2063-2072
In real manufacturing environments, some customer orders include multiple jobs. However, a single due-date should be assigned to each order. Further, machine processing rate is not constant at all times. In effect, in many manufacturing operations, the machine processing rate decreases to a subnormal level during time and needs a special type of maintenance to bring the normal state back. Due to this reduction in capacity, production schedulers may decide to reject some orders. In this paper, the novel extensive problem of selecting a subset of orders, assigning due-dates to selected orders, scheduling the selected orders and jobs within each one, and scheduling the rate-modifying maintenance is studied. The objective function is minimizing total cost of lost-sales of rejected orders together with due-date length and maximum of earliness and tardiness of selected orders. The problem is proved polynomial and an optimal approach is developed.  相似文献   

16.
This paper considers the problem of scheduling part families and jobs within each part family in a flowline manufacturing cell with independent family setup times where parts (jobs) in each family are processed together. The objective is to minimize total flow time. A branch-and-bound algorithm capable of solving moderate sized problems is developed. Several heuristic algorithms are proposed and empirically evaluated as to their effectiveness and efficiency in finding optimal permutation schedules. These results show that several heuristic algorithms generate solutions that are better than those generated by an existing genetic algorithm.  相似文献   

17.
In this paper, we develop a three-step heuristic to address a production scheduling problem at a high volume assemble-to-order electronics manufacturer. The heuristic provides a solution for scheduling multiple product families on parallel, identical production lines so as to minimize setup costs. The heuristic involves assignment, sequencing, and time scheduling steps, with an optimization approach developed for each step. For the most complex step, the sequencing step, we develop a greedy randomized adaptive search procedure (GRASP). We compare the setup costs resulting from the use of our scheduling heuristic against a heuristic previously developed and implemented at the electronics manufacturer that assumes approximately equal, sequence-independent, setup costs. By explicitly considering the sequence-dependent setup costs and applying GRASP, our empirical results show a reduction in setups costs for an entire factory of 14–21% with a range of single production line reductions from 0% to 49%.  相似文献   

18.
This paper deals with the optimal scheduling of a one-machine two-product manufacturing system with setup, operating in a continuous time dynamic environment. The machine is reliable. A known constant setup time is incurred when switching over from a part to the other. Each part has specified constant processing time and constant demand rate, as well as an infinite supply of raw material. The problem is formulated as a production flow control problem. The objective is to minimize the sum of the backlog and inventory costs incurred over a finite planning horizon. The global optimal solution, expressed as an optimal feedback control law, provides the optimal production rate and setup switching epochs as a function of the state of the system (backlog and inventory levels). For the steady-state, the optimal cyclic schedule (Limit Cycle) is determined. This is equivalent to solving a one-machine two-product Lot Scheduling Problem. To solve the transient case, the system's state space is partitioned into mutually exclusive regions such that with each region is associated an optimal control policy. A novel algorithm (Direction Sweeping Algorithm) is developed to obtain the optimal state trajectory (optimal policy that minimizes the sum of inventory and backlog costs) for this last case.  相似文献   

19.
A heuristic scheduling policy is introduced for a multi-item, single-machine production facility. The scheduling policy uses the presumed optimal order quantities derived from solving an Economic Lot Size Problem and checks that the quantities obtain a feasible production schedule according to current inventory levels and expected demand rates. If not, the scheduling policy modifies the order quantities to achieve a possible solution without shortages. The scheduling policy is inspired by modification of the similar heuristic Dynamic Cycle Lengths Policy by Leachman and Gascon from 1988, 1991. The main characteristics of this scheduling policy are successive batches of the same item are treated explicitly, due to that it is quite possible that one item be manufactured several times before one other item is manufactured once more; the batches are ordered in increasing run-out time; if the existing situation creates stock-outs with ordinary order quantities, then the order quantities are decreased with a common scaling factor to try to prevent inventory shortages; in case the decrease of the order quantities changes expected run-out times, the batches are reordered after new run-out times; no filling up to an explicit inventory level is done, the filling up is done by the desirable order quantity; to prevent possible excess inventory the policy suggests time periods where no production should be performed. The scheduling policy contains no economical evaluation; this is supposed to be done when the order quantities are calculated, the policy prevents shortages and excess inventory. A numerical example illustrates the suggested scheduling policy. Finally, it is discussed as to how the policy can also take into account stochastic behaviour of the demand rates and compensate the schedule by applying appropriate safety times.  相似文献   

20.
This paper studies the order-fulfillment process of a supplier producing multiple customized capital goods. The times when orders are confirmed by customers are random. The supplier can only work on one product at any time due to capacity constraints. The supplier must determine the optimal time to start the process for each order so that the total expected cost of having the goods ready before or after their orders are confirmed is minimized. We formulate this problem as a discrete time Markov decision process. The optimal policy is complex in general. It has a threshold-type structure and can be fully characterized only for some special cases. Based on our formulation, we compute the optimal policy and quantify the value of jointly managing the order fulfillment processes of multiple orders and the value of taking into account demand arrival time uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号