首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In workforce scheduling, the optimal schedule has traditionally been determined by minimizing the cost of labor subject to an acceptable service level, which is defined as the percentage of customers served within a predetermined time interval. We propose an alternative multidimensional paradigm, where cost minimization and service level maximization are considered simultaneously, together with other, complementary criteria. The ultimate goal of the proposed approach is to open a broader workforce scheduling paradigm that incorporates service quality into the analysis and provides the possibility to study the interaction between cost and service quality. Furthermore, the approach enables us to avoid strong assumptions. An example with real-world, empirical demand data is provided.  相似文献   

2.
Dominance-based Rough Set Approach (DRSA) has been introduced to deal with multiple criteria classification (also called multiple criteria sorting, or ordinal classification with monotonicity constraints), where assignments of objects may be inconsistent with respect to dominance principle. In this paper, we consider an extension of DRSA to the context of imprecise evaluations of objects on condition criteria and imprecise assignments of objects to decision classes. The imprecisions are given in the form of intervals of possible values. In order to solve the problem, we reformulate the dominance principle and introduce second-order rough approximations. The presented methodology preserves well-known properties of rough approximations, such as rough inclusion, complementarity, identity of boundaries and precisiation. Moreover, the meaning of the precisiation property is extended to the considered case. The paper presents also a way to reduce decision tables and to induce decision rules from rough approximations.  相似文献   

3.
An algorithm for finding agood solution for a multiple criteria optimal control problem is given. The criteria are assumed to be ordered according to their importance to the decision-maker. The algorithm consists of successive solutions of single criterion optimal control problems. Other criteria are taken into account by adding constraints to the problem in a systematic manner.  相似文献   

4.
This paper studies the two-agent scheduling on an unbounded parallel-batching machine. In the problem, there are two agents A and B with each having their own job sets. The jobs of a common agent can be processed in a common batch. Moreover, each agent has an objective function to be minimized. The objective function of agent A is the makespan of his jobs and the objective function of agent B is maximum lateness of his jobs. Yazdani Sabouni and Jolai [M.T. Yazdani Sabouni, F. Jolai, Optimal methods for batch processing problem with makespan and maximum lateness objectives, Appl. Math. Model. 34 (2010) 314–324] presented a polynomial-time algorithm for the problem to minimize a positive combination of the two agents’ objective functions. Unfortunately, their algorithm is incorrect. We then dwell on the problem and present a polynomial-time algorithm for finding all Pareto optimal solutions of this two-agent parallel-batching scheduling problem.  相似文献   

5.
We develop a generic game platform that can be used to model various real-world systems with multiple intelligent cloud-computing pools and parallel-queues for resources-competing users. Inside the platform, the software structure is modelled as Blockchain. All the users are associated with Big Data arrival streams whose random dynamics is modelled by triply stochastic renewal reward processes (TSRRPs). Each user may be served simultaneously by multiple pools while each pool with parallel-servers may also serve multi-users at the same time via smart policies in the Blockchain, e.g. a Nash equilibrium point myopically at each fixed time to a game-theoretic scheduling problem. To illustrate the effectiveness of our game platform, we model the performance measures of its internal data flow dynamics (queue length and workload processes) as reflecting diffusion with regime-switchings (RDRSs) under our scheduling policies. By RDRS models, we can prove our myopic game-theoretic policy to be an asymptotic Pareto minimal-dual-cost Nash equilibrium one globally over the whole time horizon to a randomly evolving dynamic game problem. Iterative schemes for simulating our multi-dimensional RDRS models are also developed with the support of numerical comparisons.  相似文献   

6.
We consider the multiple shift scheduling problem modelled as a covering problem. Such problems are characterized by a constraint matrix that has, in every column, blocks of consecutive 1s, each corresponding to a shift. We focus on three types of shift scheduling problems classified according to the column structure in the constraint matrix: columns of consecutive 1s, columns of cyclical 1s, and columns of k consecutive blocks. In particular, the complexity of the cyclical scheduling problem, where the matrix satisfies the property of cyclical 1s in each column, was noted recently by Hochbaum and Tucker to be open. They further showed that the unit demand case is polynomially solvable. Here we extend this result to the uniform requirements case, and provide a 2-approximation algorithm for the non-uniform case. We also establish that the cyclical scheduling problem’s complexity is equivalent to that of the exact matching problem—a problem the complexity status of which is known to be randomized polynomial (RP). We then investigate the three types of shift scheduling problems and show that, while the consecutive ones version is polynomial and the k-block columns version is NP-hard (for k≥2), for the k-blocks problem we give a simple k-approximation algorithm, which is the first approximation algorithm determined for the problem.  相似文献   

7.
The single machine group scheduling problem is considered. Jobs are classified into several groups on the basis of group technology, i.e. jobs of the same group have to be processed jointly. A machine set-up time independent of the group sequence is needed between each two consecutive groups. A schedule specifies the sequence of groups and the sequence of jobs in each group. The quality of a schedule is measured by the criteriaF 1, ...,F m ordered by their relative importance. The objective is to minimize the least important criterionF m subject to the schedule being optimal with respect to the more important criterionF m–1 which is minimized on the set of schedules minimizing criterionF m–2 and so on. The most important criterion isF 1, which is minimized on the set of all feasible schedules. An approach to solve this multicriterion problem in polynomial time is presented if functionsF 1, ...,F m have special properties. The total weighted completion time and the total weighted exponential time are the examples of functionsF 1, ...,F m–1 and the maximum cost is an example of functionF m for which our approach can be applied.The research of the authors was partially supported by a KBN Grant No. 3 P 406 003 05, the Fundamental Research Fund of Belarus, Project N 60-242, and the Deutsche Forschungsgemeinschaft, Project Schema, respectively. The paper was completed while the first author was visiting the University of Melbourne.  相似文献   

8.
This article develops a convex polyhedral cone-based preference modeling framework for decision making with multiple criteria which extends the classical notion of Pareto optimality and accounts for relative importance of the criteria. The decision maker’s perception of the relative importance is quantified by an allowable tradeoffs between two objectives representing the maximum allowable amount of decay of a less important objective per one unit of improvement of a more important objective. Two cone-based models of relative importance are developed. In the first model, one criterion is designated as less important while all the others are more important. In the second model, more than one criterion may be classified as less important while all the others are considered more important. Complete algebraic characterization of the models is derived and the relationship between them and the classical Pareto preference is examined. Their relevance to decision making is discussed.  相似文献   

9.
One of the most difficult tasks in multiple criteria decision analysis (MCDA) is determining the weights of individual criteria so that all alternatives can be compared based on the aggregate performance of all criteria. This problem can be transformed into the compromise programming of seeking alternatives with a shorter distance to the ideal or a longer distance to the anti-ideal despite the rankings based on the two distance measures possibly not being the same. In order to obtain consistent rankings, this paper proposes a measure of relative distance, which involves the calculation of the relative position of an alternative between the anti-ideal and the ideal for ranking. In this case, minimizing the distance to the ideal is equivalent to maximizing the distance to the anti-ideal, so the rankings obtained from the two criteria are the same. An example is used to discuss the advantages and disadvantages of the proposed method, and the results are compared with those obtained from the TOPSIS method.  相似文献   

10.
11.
This research focuses on the stochastic assignment system motivated by outpatient clinics, especially the physical therapy in rehabilitation service. The aim of this research is to develop a stochastic overbooking model to enhance the service quality as well as to increase the utilization of multiple resources, like therapy equipment in a physical therapy room, with the consideration of patients’ call-in sequence. The schedule for a single-service period includes a fixed number of blocks of equal length. When patients call, they are assigned to an appointment time for that block, and an existing appointment is not allowed to be changed. In each visit, a patient might require more than one resource and a probability of no-show. Two estimation methods were proposed for the expected waiting and overtime cost with multiple resources: Convolution Estimation Method and Joint Cumulative Estimation Method for the upper and lower bound value; respectively. A numerical example based on a physical therapy room was used to show that this stochastic model was able to schedule patients for better profitability compared with traditional appointment systems based on four prioritization rules. The workload in each appointment slot was more balanced albeit more patients were assigned to the first slot to fill up the empty room.  相似文献   

12.
In the highly unpredictable environment of grid computing, it often makes sense to replicate the same job on several of the available servers. We prove that never replicating is optimal for a heterogeneous multi-server system in a random environment when service times are New Better than Used.  相似文献   

13.
A multicriteria choice problem is considered. The Edgeworth-Pareto principle is established under the assumption that certain axioms hold true. Quantitative interdependent information on the relative importance of two groups of criteria is used to derive upper bounds for the unknown set of selected vectors.  相似文献   

14.
The structure of the search space explains the behavior of multiobjective search algorithms, and helps to design well-performing approaches. In this work, we analyze the properties of multiobjective combinatorial search spaces, and we pay a particular attention to the correlation between the objective functions. To do so, we extend the multiobjective NK-landscapes in order to take the objective correlation into account. We study the co-influence of the problem dimension, the degree of non-linearity, the number of objectives, and the objective correlation on the structure of the Pareto optimal set, in terms of cardinality and number of supported solutions, as well as on the number of Pareto local optima. This work concludes with guidelines for the design of multiobjective local search algorithms, based on the main fitness landscape features.  相似文献   

15.
16.
In this article we answer the complexity question of two dual criteria scheduling problems which had been open for a long time. We show that both problems are binary NP-hard.  相似文献   

17.
Some variations are presented for the preemptive scheduling problem on unrelated processors, one shows how nonrenewable resources with a time-varying supply may be taken into account in an extension of the two-phase method; phase 1 consists in solving an LP problem and phase 2 is the construction of the schedule; such a construction reduces to the determination of integral vectors in polyhedra defined by totally unimodular matrices. In special cases, this is simply a compatible flow problem.
Zusammenfassung Es werden Variationen für Reihenfolgeprobleme mit Unterbrechungen betrachtet bei denen die Aufgaben mit unterschiedlicher Bearbeitungszeit auf den einzelnen Maschinen gelöst werden können. Insbesondere wird ein Problem mit nichterneuerbaren Resourcen und zeitabhängigen Nachfragen behandelt und es wird gezeigt, daß dieses Problem durch eine Erweiterung der 2-Phasenmethode gelöst werden kann. In Phase 1 wird ein LP gelöst, während in Phase 2 ein zugehöriger Schedule konstruiert wird. Diese Konstruktion erfolgt durch die Bestimmung ganzzahliger Vektoren, die Ecken eines Polyeders entsprechen, der durch eine vollständig unimodulare Matrix definiert wird. In Spezialfällen reduziert sich dies auf Flußprobleme.
  相似文献   

18.
An improved heuristic is proposed for one-machine scheduling problem with delay constraints, thus an open problem raised by Wikumet al. is solved. The heuristic solves the corresponding unit-execution-time problem optimally.  相似文献   

19.
We present a (3.5+?)-approximation algorithm for a scheduling problem on identical parallel machines with the objective to mimimize the makespan. The processing times depend on the usage of a single renewable resource where at any point of time at most k units from the resource are available.  相似文献   

20.
We study the problem of scheduling n non-preemptable jobs on a single machine which is not available for processing during a given time period. The objective is to minimize the sum of the job completion times. The best known approximation algorithm for this NP-hard problem has a relative worst-case error bound of 17.6%. We present a parametric O(nlog n)-algorithm H with which better worst-case error bounds can be obtained. The best error bound calculated for the algorithm in the paper is 7.4%. In a computational experiment, we test the algorithm with the performance guarantee set to 10.2%. It turns out that randomly generated instances with up to 1000 jobs can be solved with a mean (maximum) error of 0.31% (3.18%) and a mean (maximum) computation time of 0.8 (9.7) seconds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号