首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
With the rapid development in computer technologies, mathematical programming-based technique to solve scheduling problems is significantly receiving attention from researchers. Although, it is not efficient solution method due to the NP-hard structure of these problems, mathematical programming formulation is the first step to develop an effective heuristic. Numerous comparative studies for variety scheduling problems have appeared over the years. But in our search in literature there is not an entirely review for mathematical formulations of flexible job shop scheduling problems (FJSP). In this paper, four the most widely used formulations of the FJSP are compiled from literature and a time-indexed model for FJSP is proposed. These formulations are evaluated under three categories that are distinguished by the type of binary variable that they rely on for using of sequencing operations on machines. All five formulations compared and results are presented.  相似文献   

2.
An efficient systematic iterative solution strategy for solving real-world scheduling problems in multiproduct multistage batch plants is presented. Since the proposed method has its core a mathematical model, two alternative MIP scheduling formulations are suggested. The MIP-based solution strategy consists of a constructive step, wherein a feasible and initial solution is rapidly generated by following an iterative insertion procedure, and an improvement step, wherein the initial solution is systematically enhanced by implementing iteratively several rescheduling techniques, based on the mathematical model. A salient feature of our approach is that the scheduler can maintain the number of decisions at a reasonable level thus reducing appropriately the search space. A fact that usually results in manageable model sizes that often guarantees a more stable and predictable optimization model behavior. The proposed strategy performance is tested on several complicated problem instances of a multiproduct multistage pharmaceuticals scheduling problem. On average, high quality solutions are reported with relatively low computational effort. Authors encourage other researchers to adopt the large-scale pharmaceutical scheduling problem to test on it their solution techniques, and use it as a challenging comparison reference.  相似文献   

3.
The increasing variety of products offered by the food industry has helped the industry to respond to market trends, but at the same time has resulted in a more complex production process, which requires flexibility and an efficient coordination of existing resources. Especially in industrial yogurt production, there is a wide variety of products that differ in features like fat content, the whey used to produce the mixture, the flavor, the size of the container or the language on the label. The great diversification and the special features that characterize yogurt production lines (satisfaction of multiple due dates, variable processing times, sequence-dependent setup times and costs and monitoring of inventory levels), render generic scheduling methodologies impractical for real-world applications. In this work we present a customized Mixed Integer Linear Programming (MILP) model for optimizing yogurt packaging lines that consist of multiple parallel machines. The model is characterized by parsimony in the utilization of binary variables and necessitates the use of only a small pre-determined number of time periods. The efficiency of the proposed model is illustrated through its application to the yogurt production plant of a leading dairy product manufacturing company in Greece.  相似文献   

4.
5.
In this paper we present a mixed integer programming model that integrates production lot sizing and scheduling decisions of beverage plants with sequence-dependent setup costs and times. The model considers that the industrial process produces soft drink bottles in different flavours and sizes, and it is carried out in two production stages: liquid preparation (stage I) and bottling (stage II). The model also takes into account that the production bottleneck may alternate between stages I and II, and a synchronisation of the production between these stages is required. A relaxation approach and several strategies of the relax-and-fix heuristic are proposed to solve the model. Computational tests with instances generated based on real data from a Brazilian soft drink plant are also presented. The results show that the solution approaches are capable of producing better solutions than those used by the company.  相似文献   

6.
The authors have studied in [5] alternative real variable models based on the function d(x) = x(α + x), α >0, for certain integer or mixed-interger programming problems. Mainly, we have shown that there exists a vector α > 0 such that the solution to the problem min σ1(x, α) = Σi=1nxi(gai+xi), Ax = b, x ? 0, is a solution to the problem min σxσ+, Ax = b, x ? 0, where σxσ+ denotes the cardinal of x, i.e. the number of strictly positive components of x, thus obtaining a new model for solving in real numbers a Generalized Lattice Point Problem (Cabot, [3]).The function d(x) has been introduced by use as a general tool for solving integer or mixed-integer problems due to its property of having almost everywhere almost discrete values. In the meantime we noticed that this function may represent a membership function of a fuzzy set.In this paper, we study in detail the features of this membership function and show that Cabot's results [3] may be derived in this more general setting using the complementary function s(x) = 1 ? x(α + x) = α(α+x).At the same time, in the paper there are some production scheduling models within the framework of fuzzy-sets theory. To this end, a nonconvex production model is presented and it is shown that the value of the objective function μ2 = 1 ? σ1n for a production programming model whose deman and/or resource vector components are parametrized, may be considered as a grade of membership of the solution of the parametrized model to the feasible set of the nonparametrized production programming model.Consequently, we get a nonconvex production programming model whose convex envelope is linear with coefficients which are in an inverse proportior to the magnitude of the nonparametrized demand or resource vector components. This result agrees with the intuitive idea that a high level of demand or resource allows a greater interval of variation in the production process than a lower level of demand or resource.  相似文献   

7.
Lot-sizing with production and delivery time windows   总被引:3,自引:0,他引:3  
We study two different lot-sizing problems with time windows that have been proposed recently. For the case of production time windows, in which each client specific order must be produced within a given time interval, we derive tight extended formulations for both the constant capacity and uncapacitated problems with Wagner-Whitin (non-speculative) costs. For the variant with nonspecific orders, known to be equivalent to the problem in which the time windows can be ordered by time, we also show equivalence to the basic lot-sizing problem with upper bounds on the stocks. Here we derive polynomial time dynamic programming algorithms and tight extended formulations for the uncapacitated and constant capacity problems with general costs. For the problem with delivery time windows, we use a similar approach to derive tight extended formulations for both the constant capacity and uncapacitated problems with Wagner-Whitin (non-speculative) costs. We are most grateful for the hospitality of IASI, Rome, where part of this work was carried out. The collaboration with IASI takes place in the framework of ADONET, a European network in Algorithmic Discrete Optimization, contract n MRTN-CT-2003-504438. This text presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the authors.  相似文献   

8.
This paper presents a mixed integer programming (MIP) model which succeeds in a system integration of the production planning and shop floor scheduling problems. The proposed advanced planning and scheduling (APS) model explicitly considers capacity constraints, operation sequences, lead times and due dates in a multi-order environment. The objective of the model is to seek the minimum cost of both production idle time and tardiness or earliness penalty of an order. The output of the model is operation schedules with order starting time and finish time. Numerical result shows that the suggested APS model can favorably produce optimal schedules.  相似文献   

9.
This paper develops a mathematical model for project time compression problems in CPM/PERT type networks. It is noted this formulation of the problem will be an adequate approximation for solving the time compression problem with any continuous and non-increasing time-cost curve. The kind of this model is Mixed Integer Linear Program (MILP) with zero-one variables, and the Benders' decomposition procedure for analyzing this model has been developed. Then this paper proposes a new approach based on the surrogating method for solving these problems. In addition, the required computer programs have been prepared by the author to execute the algorithm. An illustrative example solved by the new algorithm, and two methods are compared by several numerical examples. Computational experience with these data shows the superiority of the new approach.  相似文献   

10.
In a recent paper, Chen and Ji [Chen, K., Ji, P., 2007. A mixed integer programming model for advanced planning and scheduling (APS). European Journal of Operational Research 181, 515–522] develop a mixed integer programming model for advanced planning and scheduling problem that considers capacity constraints and precedence relations between the operations. The orders require processing of several operations on eligible machines. The model presented in the above paper works for the case where each operation can be processed on only one machine. However, machine eligibility means that only a subset of machines are capable of processing a job and this subset may include more than one machine. We provide a general model for advanced planning and scheduling problems with machine eligibility. Our model can be used for problems where there are alternative machines that an operation can be assigned to.  相似文献   

11.
This paper presents a dynamic production planning and scheduling algorithm for two products processed on one line over a fixed time horizon. Production rates are assumed fixed, and restrictions are placed or inventory levels and production run lengths. The resulting problem is a nonlinear binary program, which is solved using an implicit enumeration strategy. The algorithm focuses on the run changeover period while developing tighter bounds on the length of the upcoming run to improve computational efficiency. About 99% pf 297 randomly generated problems with varying demand patterns are solved in less than 15 seconds of CPU time on a CDC Cyber 172 Computer. A mixed integer programming formulation of the generalized multi-product case under no-backlogging of demand is also given.  相似文献   

12.
The optimization problem addressed in this paper is an advanced form of the flexible job shop scheduling problem (FJSP) which also covers process plan flexibility and separable/non-separable sequence dependent setup times in addition to routing flexibility. Upon transforming the problem into an equivalent network problem, two mixed integer goal programming models are formulated. In the first model (Model A) the sequence dependent setup times are non-separable. In the second one (Model B) they are separable. Model B is obtained from Model A with a minor modification. The formulation of the models is described on a small sized numerical example and the solutions are interpreted. Finally, computational results are obtained on test problems.  相似文献   

13.
This text summarizes the PhD thesis defended by the author in January 2006 under the supervision of Professor Erik Demeulemeester at the Katholieke Universiteit Leuven. The thesis is written in English and is available from the author’s website (http://www.econ.kuleuven.be/jeroen.belien). In this research we propose a number of exact and heuristic algorithms for various scheduling problems encountered in hospitals. The emphasis lies on the design of new methodologies as well as on the applicability of the algorithms in real-life environments. The main contributions include a new decomposition approach for a particular class of staff scheduling problems, an extensive study of master surgery scheduling algorithms that aim at leveling the resultant bed occupancy and an innovative method for integrating nurse and surgery scheduling.   相似文献   

14.
Passengers travelling in public transportation networks often have to use different lines to cover the trip from their origin to the desired destination. As a consequence, the reliability of connections between vehicles is a key issue for the attractiveness of the intermodal transportation network and it is strongly affected by some unpredictable events like breakdowns or vehicle delays. In such cases, a decision is required to determine if the connected vehicles should wait for the delayed ones or keep their schedule. The delay management problem (DMP) consists in defining the wait/depart policy which minimizes the total delay on the network. In this work, we present two equivalent mixed integer linear programming models for the DMP with a single initial delay, able to reduce the number of variables with respect to the formulations proposed by the literature. The two models are solved by a branch and cut procedure and by a constraint generation approach respectively, and preliminary computational results are presented.  相似文献   

15.
A general framework for modeling and solving cyclic scheduling problems is presented. The objective is to minimize the cycle time. The model covers different cyclic versions of the job-shop problem found in the literature, robotic cell problems, the single hoist scheduling problem and tool transportation between the machines.It is shown that all these problems can be formulated as mixed integer linear programs which have a common structure. Small instances are solved with CPLEX. For larger instances tabu search procedures have been developed. The main ideas of these methods are indicated.  相似文献   

16.
The decision problem considered in this paper is a hierarchical workforce scheduling problem in which a higher qualified worker can substitute for a lower qualified one, but not vice versa, labour requirements may vary, and each worker must receive n off-days a week. Within this context, five mathematical models are discussed. The first two of these five models are previously published. Both of them are for the case where the work is indivisible. The remaining three models are developed by the authors of this paper. One of these new models is for the case where the work is indivisible and the other two are for the case where the work is divisible. The three new models are proposed with the purpose of removing the shortcomings of the previously published two models. All of the five models are applied on the same illustrative example. Additionally, a total of 108 test problems are solved within the context of two computational experiments.  相似文献   

17.
This paper considers the problem of hybrid flowshop scheduling. First, we review the shortcoming of the available model in the literature. Then, four different mathematical models are developed in form of mixed integer linear programming models. A complete experiment is conducted to compare the models for performance based on the size and computational complexities. Besides the models, the paper proposes a novel hybrid particle swarm optimization algorithm equipped with an acceptance criterion and a local search heuristic. The features provide a fine balance of diversification and intensification capabilities for the algorithm. Using Taguchi method, the algorithm is fine tuned. Then, two numerical experiments are performed to evaluate the performance of the proposed algorithm with three particle swarm optimization algorithms available in the scheduling literature and one well-known iterated local search algorithm in the hybrid flowshop literature. All the results show the high performance of the proposed algorithm.  相似文献   

18.
To deal with their highly variable workload, logistics companies make their task force flexible using multi-skilled employees, flexible working hours or short-term contracts. Together with the legal constraints and the handling equipments’ capacities, these possibilities make personnel scheduling a complex task. This paper describes a model to support their chain of decisions from the weekly timetabling to the daily rostering (detailed task allocation).  相似文献   

19.
This paper introduces an original planning model which integrates production, human resources and cash management decisions, taking into account the consequences that decisions in one area may have on other areas and allowing all these areas to be coordinated. The most relevant characteristics of the planning problem are: (1) production capacity is a non-linear function of the size of the staff; (2) firing costs may depend on the worker who is fired; (3) working time is managed under a working time account (WTA) scheme, so positive balances must be paid to workers who leave the company; (4) there is a learning period for hired workers; and (5) cash management is included. A mixed integer linear program is designed to solve the problem. Despite the size and complexity of the model, it can be solved in a reasonable time. A numerical example, the main results of a computational experiment and a sensibility analysis illustrate the performance and benefits of the model.  相似文献   

20.
This paper presents a novel solution heuristic to the General Lotsizing and Scheduling Problem for Parallel production Lines (GLSPPL). The GLSPPL addresses the problem of simultaneously deciding about the sizes and schedules of production lots on parallel, heterogeneous production lines with respect to scarce capacity, sequence-dependent setup times and deterministic, dynamic demand of multiple products. Its objective is to minimize inventory holding, sequence-dependent setup and production costs. The new heuristic iteratively decomposes the multi-line problem into a series of single-line problems, which are easier to solve. Different approaches for decomposition and for the iteration between a modified multi-line master problem and the single-line subproblems are proposed. They are compared with an existing solution method for the GLSPPL by means of medium-sized and large practical problem instances from different types of industries. The new methods prove to be superior with respect to both solution quality and computation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号