首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper addresses a multi-period, multi-product sawmill production planning problem where the yields of processes are random variables due to non-homogeneous quality of raw materials (logs). In order to determine the production plans with robust customer service level, robust optimization approach is applied. Two robust optimization models with different variability measures are proposed, which can be selected based on the tradeoff between the expected backorder/inventory cost and the decision maker risk aversion level about the variability of customer service level. The implementation results of the proposed approach for a realistic-scale sawmill example highlights the significance of using robust optimization in generating more robust production plans in the uncertain environments compared with stochastic programming.  相似文献   

2.
In the stochastic variant of the vehicle routing problem with time windows, known as the SVRPTW, travel times are assumed to be stochastic. In our chance-constrained approach to the problem, restrictions are placed on the probability that individual time window constraints are violated, while the objective remains based on traditional routing costs. In this paper, we propose a way to offer this probability, or service level, for all customers. Our approach carefully considers how to compute the start-service time and arrival time distributions for each customer. These distributions are used to create a feasibility check that can be “plugged” into any algorithm for the VRPTW and thus be used to solve large problems fairly quickly. Our computational experiments show how the solutions change for some well-known data sets across different levels of customer service, two travel time distributions, and several parameter settings.  相似文献   

3.
Appointment systems are widely used to facilitate customers’ access to services in many industries such as healthcare. A number of studies have taken a queueing approach to analyse service systems and facilitate managerial decisions on staffing requirements by assuming independent and stationary customer arrivals. This paper is motivated by the observation that the queueing-based method shows relatively poor performance when customers arrive according to their appointment times. Because customer arrivals are dependent on their appointment times, this study, unlike queueing-based methods, conducts a detailed analysis of appointment-based customer arrivals instead of making steady-state assumptions. We develop a new model that captures the characteristics of appointment-based customer arrivals and computes the probability of transient system states. Through the use of this model, which relaxes stationary and independent assumptions, we propose a heuristic algorithm that determines staffing requirements with aims to minimizing staff-hours while satisfying a target service level. The simulation results show that the proposed method outperforms the queueing-based method.  相似文献   

4.
We consider the problem of staffing large-scale service systems with multiple customer classes and multiple dedicated server pools under joint quality-of-service (QoS) constraints. We first analyze the case in which arrival rates are deterministic and the QoS metric is the probability a customer is queued, given by the Erlang-C formula. We use the Janssen–Van Leeuwaarden–Zwart bounds to obtain asymptotically optimal solutions to this problem. The second model considered is one in which the arrival rates are not completely known in advance (before the server staffing levels are chosen), but rather are known via a probability distribution. In this case, we provide asymptotically optimal solutions to the resulting stochastic integer program, leveraging results obtained for the case of deterministic arrivals.  相似文献   

5.
The classical vehicle routing problem involves designing a set of routes for a fleet of vehicles based at one central depot that is required to serve a number of geographically dispersed customers, while minimizing the total travel distance or the total distribution cost. Each route originates and terminates at the central depot and customers demands are known. In many practical distribution problems, besides a hard time window associated with each customer, defining a time interval in which the customer should be served, managers establish multiple objectives to be considered, like avoiding underutilization of labor and vehicle capacity, while meeting the preferences of customers regarding the time of the day in which they would like to be served (soft time windows). This work investigates the use of goal programming to model these problems. To solve the model, an enumeration-followed-by-optimization approach is proposed which first computes feasible routes and then selects the set of best ones. Computational results show that this approach is adequate for medium-sized delivery problems.  相似文献   

6.
New algorithms based on mixed integer programming formulations are proposed for reactive scheduling in a dynamic, make-to-order manufacturing environment. The problem objective is to update a long-term production schedule subject to service level and inventory constraints, whenever the customer orders are modified or new orders arrive. Different rescheduling policies are proposed, from a total reschedule of all remaining and unmodified customer orders to a non-reschedule of all such orders. In addition, a medium restrictive policy is considered for rescheduling only a subset of remaining customer orders awaiting material supplies. Numerical examples modeled after a real-world scheduling/rescheduling of customer orders in the electronics industry are presented and some results of computational experiments are reported.  相似文献   

7.
针对不确定市场需求条件下第三方仓储资源的能力规划与分配问题,构建随机数学规划模型,理论分析证明了最优资源分配量的存在性,并指出最优资源分配量是单位资源成本的递减函数、单位资源收益和单位损失成本的递增函数。鉴于解析求解的复杂性,基于收益管理思想,结合离散事件仿真技术和响应曲面法,提出一种新的分析求解框架:收益管理用于细分顾客、构建资源分配策略,仿真模型刻画系统随机特性并评估系统绩效指标,响应曲面法则优化分配策略并探寻绩效改进方向。案例研究和仿真实验结果显示,根据顾客类别分配仓储能力的策略优于传统的先到先服务策略,收益管理、响应曲面法与仿真的综合集成,能够提高系统收益,从而使本文所提方法体系得到了有效验证。  相似文献   

8.
Many approaches to the problem of arranging customer orders for cutting or corrugation have focused on the minimization of trim waste. This views the corrugator more or less in isolation. When downstream machines or customer due-dates exist, however, customer service may suffer from the desire to keep scrap at a low level. Thus, if slightly higher levels of waste were accepted, the production scheduler might be able to improve performance regarding due dates.We developed a simulation model, for Domtar Packaging Ltd, of a corrugated cardboard box factory, which included the corrugation process and four finishing machines. Customer orders were generated via empirical and theoretical probability distributions, then sent through the model according to one of several scheduling rules. This allowed the relationship between various levels of trim waste and customer service to be viewed. Results of the simulation experiments, as well as a discussion of the model itself, are given. Comments and conclusions regarding both our model and corrugator algorithms in general are presented in the light of the role of the human scheduler in plants of this type.  相似文献   

9.
This paper considers an unreliable assembly network where different types of components are processed by two separate work centers before being merged at an assembly station. The operation complexity of the system is a result of finite inter-station buffers, uncertain service times, and random breakdowns that lead to blocking at the work centers and starvation at the assembly station. The objective of this study is to gain an understanding of the behavior of such systems so that we can find a way to maximize the system throughput while maintaining the required customer service level. By constructing appropriate Markov processes, we obtain the probability distribution of the production flow time and derive formulas for throughput, the loss probability of type-2 workpieces, and the mean flow time. We present expressions for average work-in-process (WIP) and study their monotone properties. Using the distribution of the flow time, a customer service level can be defined and computed. We then formulate a system optimization model that can be used to maximize the throughput while maintaining an acceptable service level.  相似文献   

10.
This research is motivated by an automobile manufacturing supply chain network. It involves a multi-echelon production system with material supply, component fabrication, manufacturing, and final product distribution activities. We address the production planning issue by considering bill of materials and the trade-offs between inventories, production costs and customer service level. Due to its complexity, an integrated solution framework which combines scatter evolutionary algorithm, fuzzy programming and stochastic chance-constrained programming are combined to jointly take up the issue. We conduct a computational study to evaluate the model. Numerical results using the proposed algorithm confirm the advantage of the integrated planning approach. Compared with other solution methodologies, the supply chain profits from the proposed approach consistently outperform, in some cases up to 13% better. The impacts of uncertainty in demand, material price, and other parameters on the performance of the supply chain are studied through sensitivity analysis. We found the proposed model is effective in developing robust production plans under various market conditions.  相似文献   

11.
Motivated by service levels in terms of the waiting-time distribution seen, for instance, in call centers, we consider two models for systems with a service discipline that depends on the waiting time. The first model deals with a single server that continuously adapts its service rate based on the waiting time of the first customer in line. In the second model, one queue is served by a primary server which is supplemented by a secondary server when the waiting of the first customer in line exceeds a threshold. Using level crossings for the waiting-time process of the first customer in line, we derive steady-state waiting-time distributions for both models. The results are illustrated with numerical examples.  相似文献   

12.
We consider a joint facility location–allocation and inventory problem that incorporates multiple sources of warehouses. The problem is motivated by a real situation faced by a multinational applied chemistry company. In this problem, multiple products are produced in several plants. Warehouse can be replenished by several plants together because of capabilities and capacities of plants. Each customer in this problem has stochastic demand and certain amount of safety stock must be maintained in warehouses so as to achieve certain customer service level. The problem is to determine number and locations of warehouses, allocation of customers demand and inventory levels of warehouses. The objective is to minimize the expected total cost with the satisfaction of desired demand weighted average customer lead time and desired cycle service level. The problem is formulated as a mixed integer nonlinear programming model. Utilizing approximation and transformation techniques, we develop an iterative heuristic method for the problem. An experiment study shows that the proposed procedure performs well in comparison with a lower bound.  相似文献   

13.
We study the operations scheduling problem with delivery deadlines in a three-stage supply chain process consisting of (1) heterogeneous suppliers, (2) capacitated processing centres (PCs), and (3) a network of business customers. The suppliers make and ship semi-finished products to the PCs where products are finalized and packaged before they are shipped to customers. Each business customer has an order quantity to fulfil and a specified delivery date, and the customer network has a required service level so that if the total quantity delivered to the network falls below a given targeted fill rate, a non-linear penalty will apply. Since the PCs are capacitated and both shipping and production operations are non-instantaneous, not all the customer orders may be fulfilled on time. The optimization problem is therefore to select a subset of customers whose orders can be fulfilled on time and a subset of suppliers to ensure the supplies to minimize the total cost, which includes processing cost, shipping cost, cost of unfilled orders (if any), and a non-linear penalty if the target service level is not met. The general version of this problem is difficult because of its combinatorial nature. In this paper, we solve a special case of this problem when the number of PCs equals one, and develop a dynamic programming-based algorithm that identifies the optimal subset of customer orders to be fulfilled under each given utilization level of the PC capacity. We then construct a cost function of a recursive form, and prove that the resulting search algorithm always converges to the optimal solution within pseudo-polynomial time. Two numerical examples are presented to test the computational performance of the proposed algorithm.  相似文献   

14.
A heuristic method for dispatching repair men   总被引:2,自引:0,他引:2  
A company has to provide service to its customers. A service consists of a visit to the customer plus the spending of some given time at the scene. The future customer demand is not known but the probability distribution for the demand may be known. When a customer call comes in, the company must immediately specify a time window within which the start of service will be provided. The problem is for a fixed service level to determine an optimal strategy of route design and time window setting so that the total distance travelled is minimized over the time horizon given. A heuristic method BARTOC (Booking Algorithm for Routing and Timing Of Customers) to solve the problem mentioned above is suggested. BARTOC is based on a cluster-first route-second approach. Some computational results are presented. The results indicate that BARTOC produces high quality solutions.Peter Matthiesen, Inc.Dano Chemo, Inc.  相似文献   

15.
In this paper we consider a retail service facility with cross-trained workers who can switch between the front room and the back room depending on the size of the queue in the front room. Two problems are presented. In the first problem, given a fixed number of cross-trained workers the objective is to find optimal switching points so that the expected customer waiting time is minimized subject to a back room service level constraint. In the second problem the number of workers is also a decision variable and the objective is to minimize it subject to both front room and back room service level constraints. The paper includes an analysis of the model and based on it several heuristics are suggested. Computational analysis with the recommended heuristics is presented and comparison to optimal solutions derived by complete enumeration shows excellent results.  相似文献   

16.
The QNET method for two-moment analysis of open queueing networks   总被引:1,自引:0,他引:1  
Consider an open network of single-server stations, each with a first-in-first-out discipline. The network may be populated by various customer types, each with its own routing and service requirements. Routing may be either deterministic or stochastic, and the interarrival and service time distributions may be arbitrary. In this paper a general method for steady-state performance analysis is described and illustrated. This analytical method, called QNET, uses both first and second moment information, and it is motivated by heavy traffic theory. However, our numerical examples show that QNET compares favorably with W. Whitt's Queueing Network Analyzer (QNA) and with other approximation schemes, even under conditions of light or moderate loading. In the QNET method one first replaces the original queueing network by what we call an approximating Brownian system model, and then one computes the stationary distribution of the Brownian model. The second step amounts to solving a certain highly structured partial differential equation problem; a promising general approach to the numerical solution of that PDE problem is described by Harrison and Dai [8] in a companion paper. Thus far the numerical solution technique has been implemented only for two-station networks, and it is clear that the computational burden will grow rapidly as the number of stations increases. Thus we also describe and investigate a cruder approach to two-moment network analysis, called ΠNET, which is based on a product form approximation, or decomposition approximation, to the stationary distribution of the Brownian system model. In very broad terms, ΠNET is comparable to QNA in its level of sophistication, whereas QNET captures more subtle system interactions. In our numerical examples the performance of ΠNET and QNA is similar; the performance of QNET is generally better, sometimes much better.  相似文献   

17.
Supply chain network design is considered a strategic decision level problem that provides an optimal platform for the effective and efficient supply chain management. In this research, we have mathematically modeled an integrated supply chain design. To ensure high customer service levels, we propose the inclusion of multiple shipping/transportation options and distributed customer demands with fixed lead times into the supply chain distribution framework and formulated an integer-programming model for the five-tier supply chain design problem considered. The problem has been made additionally complex by including realistic assumptions of nonlinear transportation and inventory holding costs and the presence of economies of scale. In the light of aforementioned facts, this research proposes a novel solution methodology that amalgamates the features of Taguchi technique with Artificial Immune System (AIS) for the optimum or near optimum resolution of the problem at hand. The performance of the proposed solution methodology has been benchmarked against a set of test instances and the obtained results are compared against those obtained by Genetic Algorithm (GA), Hybrid Taguchi–Genetic Algorithm (HTGA) and AIS. Simulation results indicate that the proposed approach can not only search for optimal/near optimal solutions in large search spaces but also has good repeatability and convergence characteristics, thereby proving its superiority.  相似文献   

18.
We study a vehicle routing problem in which vehicles are dispatched multiple times a day for product delivery. In this problem, some customer orders are known in advance while others are uncertain but are progressively realized during the day. The key decisions include determining which known orders should be delivered in the first dispatch and which should be delivered in a later dispatch, and finding the routes and schedules for customer orders. This problem is formulated as a two-stage stochastic programming problem with the objective of minimizing the expected total cost. A worst-case analysis is performed to evaluate the potential benefit of the stochastic approach against a deterministic approach. Furthermore, a sample-based heuristic is proposed. Computational experiments are conducted to assess the effectiveness of the model and the heuristic.   相似文献   

19.
In this work, the problem of allocating a set of production lots to satisfy customer orders is considered. This research is of relevance to lot-to-order matching problems in semiconductor supply chain settings. We consider that lot-splitting is not allowed during the allocation process due to standard practices. Furthermore, lot-sizes are regarded as uncertain planning data when making the allocation decisions due to potential yield loss. In order to minimize the total penalties of demand un-fulfillment and over-fulfillment, a robust mixed-integer optimization approach is adopted to model is proposed the problem of allocating a set of work-in-process lots to customer orders, where lot-sizes are modeled using ellipsoidal uncertainty sets. To solve the optimization problem efficiently we apply the techniques of branch-and-price and Benders decomposition. The advantages of our model are that it can represent uncertainty in a straightforward manner with little distributional assumptions, and it can produce solutions that effectively hedge against the uncertainty in the lot-sizes using very reasonable amounts of computational effort.  相似文献   

20.
In this paper, we present a novel decision support system for order acceptance/rejection in a hybrid Make-to-Stock/Make-to-Order production environment. The proposed decision support system is comprised of five steps. At the first step, the customers are prioritized based on a fuzzy TOPSIS method. Rough-cut capacity and rough-cut inventory are calculated in the second step and in case of unavailability in capacity and materials, some undesirable orders are rejected. Also, proper decisions are made about non-rejected orders. At the next step, prices and delivery dates of the non-rejected orders are determined by running a mixed-integer mathematical programming model. At the fourth step, a set of guidelines are proposed to help the organization negotiate over price and due date with the customers. In the next step, if the customer accepts the offered price and delivery date, the order is accepted and later considered in the production schedule of the shop floor, otherwise the order is rejected. Finally, numerical experiments are conducted to show the tractability of the applied mathematical programming model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号