首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to density functional theory (DFT) using the plane wave base and pseudo-potential, we investigate the effects of the specific location of oxygen vacancy (VO) in a (Ti,Co)O 6 distorted octahedron on the spin density and magnetic properties of Co-doped rutile TiO2 dilute magnetic semiconductors. Our calculations suggest that the V O location has a significant influence on the magnetic moment of individual Co cations. In the case where two Co atoms are separated far away from each other, when the V O is located at the equatorial site of a Co-contained octahedron, the ground state of the two Co cations is d6 (t3 2g ↑, t 3 2g ↓) without any magnetic moment. However, if the V O is located at the apical site, these two Co sites have different ground states and magnetic moments. The spin densities are also observed to be modified by the exchange coupling between the Co cations and the location of V O . Some positive spin polarization is induced around the adjacent O ions.  相似文献   

2.
The oxygen deficient cobaltites LnBaCo2O5 (Ln = Tb, Dy, Ho) exhibit two successive crystallographic transitions at T N 340 K and at T CO 210 K. Whereas the first transition (P4/mmm to Pmmm) is related to the long-range antiferromagnetic ordering of the Co ions (spin ordering), the second transition (Pmmm to Pmmb) corresponds to the long-range ordering of the Co2+ and Co3+ species (charge ordering) occurring in 1:1 ratio in the structure. The charge ordered (CO) state was directly evidenced by the observation of additional superstructure peaks using neutron and electron diffraction techniques. The CO state was also confirmed indirectly from refinement of high resolution neutron diffraction data as well as from resistivity and DSC measurements. From the refined saturated magnetic moment values only, 3.7 and 2.7 , the electronic configuration of the Co ions in LnBaCo2O5 remains conjectural. Two pictures, with Co3+ ions either in intermediate spin state ( t 5 2g e 1 g ) or in high spin state ( t 4 2g e 2 g ), describe equally well our experimental data. In both cases, the observed magnetic structure can be explained using the qualitative Goodenough-Kanamori rules for superexchange. Finally, in contrast to the parent Ln = Y compound [Vogt et al. , Phys. Rev. Lett. 84, 2969 (2000)], we do not report any spin transition in LnBaCo2O5 (Ln = Tb, Dy, Ho). Received 13 December 2000  相似文献   

3.
孙运斌  张向群  李国科  杨海涛  成昭华 《物理学报》2012,61(2):27503-027503
本文使用基于密度泛函理论的第一性原理方法研究了Co掺杂TiO2稀磁半导体中氧空位对体系能量和磁性的影响. 通过对总能量的计算发现当引入氧空位后近邻杂质体系能量高于均匀掺杂体系, 同时氧空位易在Co近邻位置富集. 进而发现氧空位的存在及其占位可以影响Co离子间的磁交换, 近邻Co离子体系下氧空位的引入使Co离子间的铁磁耦合减弱; 非近邻Co离子体系下, 底面氧空位使Co离子间呈反铁磁耦合而顶点氧空位使Co离子间呈铁磁耦合. 总之, 氧空位的存在对Co掺杂TiO2材料的能量及磁性都有较大影响.  相似文献   

4.
The dependence of the magnetic moment n 0exp of samples of the system CuFe2−x CrxO4 (x=0.0, 0.2, 0.3, 1.0, 1.4, 1.6, and 2.0) on their Cr3+ content is examined here for the first time. It is found that the experimental values of the magnetic moment n 0exp are much smaller than the values calculated from the cation distribution obtained previously (n 0 theor). It is suggested that this relationship (n 0 theor>n 0 exp) is due to a decrease in the magnetic moments of the Cr3+ ions resulting both from pairing of the t 2g orbitals of these cations in the octahedral sublattice and from a transfer of spin density from the ligands to the e g orbitals of these ions. For compositions with x>1.0, the noncollinear magnetic structure also leads to an increase in the difference between n 0 theor and n 0exp. Fiz. Tverd. Tela (St. Petersburg) 40, 99–100 (January 1998)  相似文献   

5.
Two lead-phosphate glass systems doped with both copper and vanadium ions in different ratios were studied by EPR (electron paramagnetic resonance) method. EPR spectra and parameters (g = 2.44, g = 2.08 andA = 117.6 · 10−4 cm−1) obtained for x(CuO · V2O5)(l−x)[2P2O5 · PbO] glasses withx ≤ 10 mol% suggest a tetrahedral (Td) coordination of Cu2+ ions and not a tetragonally elongated octahedron as has been assumed in previous works. The ground state of the paramagnetic electron is thed xy copper orbital with a 4pz contribution of 6%. For 20 ≤x ≤ 40 mol% a broad line (ΔB = 307 G) characteristic for clustered ions appears atg = 2.18. The V4+ ions are evidenced only in the spectra of x(CuO · 2V2O5)(1 −x)[2P2O5 · PbO] glasses and the resonance parameters suggest a pentacoordinated C4v local symmetry for these ions. The hyperfine structures characteristic for Cu2+ and V4+ ions disappear for 10 ≤x ≤ 40 mol% due to the mixed exchange Cu2+−V4+ pair formation in these glasses.  相似文献   

6.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

7.
The ground state g-factor for 55Co has been measured as ¦g¦= 1.378±0.001 by the technique of nuclear magnetic resonance on oriented nuclei. The temperature dependence of γ-ray anisotropy in the 55Fe daughter decay determines both the 1408 keV level spin and the 55Co ground state spin to be 72, and yields values of mixing ratios in the 1037 keV β-transition and the 477 keV γ-transition. The configuration mixing model is used to discuss 1f72 moment systematics.  相似文献   

8.
Min-Quan Kuang  Shao-Yi Wu  Hua-Ming Zhang 《Optik》2012,123(18):1601-1604
The local structure and spin Hamiltonian parameters (the g factors and the hyperfine structure constants) for the orthorhombic Cu2+ center in LiNbO3 are theoretically studied from the perturbation formulas of these parameters for a 3d9 ion in an orthorhombically elongated octahedron. This center is ascribed to Cu2+ occupying the Nb5+ site in LiNbO3, associated with one nearest neighbour oxygen vacancy VO along the Z axis. The planar bond lengths are found to suffer the relative variation of about 0.16 Å by compressing and stretching the Cu2+–O2? bonds along the X and Y axes, respectively, due to the Jahn–Teller effect and the charge mismatching substitution of Nb5+ by Cu2+. Meanwhile, the effectively positive VO can make the central Cu2+ displace away from the VO along the Z axis by about 0.3 Å. The theoretical spin Hamiltonian parameters based on the above local distortions show good agreement with the experimental data.  相似文献   

9.
Mikhaylova  M.  Jo  Y. S.  Kim  D. K.  Bobrysheva  N.  Andersson  Y.  Eriksson  T.  Osmolowsky  M.  Semenov  V.  Muhammed  M. 《Hyperfine Interactions》2004,159(1-4):257-260
The g-factor of the exteremely proton-rich nucleus 23Al(T 1 / 2 = 0.47 s) has been measured for the first time, applying β-NMR technique on this nucleus implanted in Si. The obtained ∣g∣ = (1.58 ± 0.2) suggests that the spin of the ground state of 23Al is 5 / 2. The magnetic moment is determined as ∣μ∣ = (3.95 ± 0.55) μ N .  相似文献   

10.
用自旋极化的MS-Xα方法研究了稀土-过渡族化合物SmCo55的电子态密度、自 旋能级劈裂及原子磁矩.研究结果显示,由于化合物中Sm-Co间的轨道杂化效应,使Sm原子原来的5d00空轨道上占据了少量5d电子.由于Co(3d)-Sm(5d)电子间的直接交换作用,导致了Sm-Co间的磁性交换耦合,这是化合物中形成Sm-Co铁磁性长程序的一个重要原因.在SmCo55化合物中存在6个能级呈现负交换耦合,导致了SmCo55关键词: 电子结构 自旋极化 原子磁矩 交换耦合  相似文献   

11.
Through first-principles total-energy calculations, the effect of H-impurity on the magnetic properties of Co-doped ZnO is studied. Instead of an antibonding location, a bond-centered location of Co-O is the most stable location for isolated H in Co-doped ZnO with a strong bond with oxygen which results in the Co neighbor displaced from the host site to form a Co dimer with the other Co. At the most stable position, due to the strong hybridization between the H-impurity states and the Co 3d-t2g minority spin states at the Fermi level in the gap, H-impurity can mediate a strong short-ranged and long-ranged ferromagnetic spin-spin interaction between neighboring Co atoms. Results based on first-principles total-energy calculations show that H-impurity is a very effective agent that can make Co-doped ZnO process high-temperature ferromagnetism.  相似文献   

12.
We observe a sharp increase in negative magneto-resistance ratio up to 40% for x=0.1, in La0.5Sr0.5Co1−xRuxO3 which is due to the magnetic disorder induced by an anti-ferromagnetic interaction between Co and Ru ions. We also observe a metal to insulator and a ferromagnetic to anti-ferromagnetic transition for 0≤x≤0.3. Ruthenium (IV) ion disrupts an intermediate spin state of cobalt (Co3+:t2g5eg1), forcing a double exchange mediated ferromagnetic state to an anti-ferromagnetic spin state for x≥0.2.  相似文献   

13.
Magnetic oxide semiconductors, for example the highly transparent and intrinsically n-type conducting zinc oxide doped with the 3d transition metal Co (ZnO:Co), are promising for the emerging field of spintronics [1]. We investigated n-conducting ZnO:Co thin films with a Co content of nominal 0.02, 0.20, or 2.00 at. %. The substitution of Co cations in the tetrahedral sites of wurtzite ZnO with Zn was confirmed at low temperature by the 1.877 eV photoluminescence between crystal field split d-levels of Co2+ (d7) ions. Based on theoretical studies, it is predicted that the formation of electron levels with zinc interstitials (IZn) or hole levels with zinc vacancies (VZn) is necessary to induce ferromagnetism, whereas the formation of electron levels with oxygen vacancies (VO) is detrimental for ferromagnetism in ZnO:Co [2]. Cobalt generates a hole level in ZnO [3]. We investigated the generation of electron levels in n-conducting ZnO:Co in dependence on the Co content by means of deep level transient spectroscopy (DLTS). However, because of the ambiguous categorization of deep defects in n-conducting ZnO (VO, IZn), an optimization of defect-related ferromagnetism in ZnO:Co is not possible at the moment. PACS 78.30.Fs; 91.60.Ed; 91.60.Mk  相似文献   

14.
冯宏剑  刘发民 《中国物理 B》2008,17(5):1874-1880
First-principles calculations have been performed to investigate the ground state electronic properties of BaFeO3 (BFO). Local spin density approximation (LSDA) plus U (LSDA+U) treatment modified the metallic behaviour to insulated one with a band gap of 4.12eV. The spontaneous polarization was found to be 89.3\muC/cm2 with Berry phase scheme in terms of the modern theory of polarization. Fe-3d eg were split into two singlet states (dz2 and d x2-y2}), and Fe-3d t2g were split into one doublet states(dxz and dyz) and one singlet states(dxy) after Fe and O displaced along the c axis. Meanwhile the occupation numbers of dz2, dyz, dxz and OT pz (on the top of Fe) were increased at the expense of those in xy plane. Our results showed that it was the sensitivity of hybridization to ferroelectric distortions, not just the total change of hybridization, that produced the possibility of ferroelectricity. Moreover, the increasing occupation numbers of OT pz and Fe dz2 favoured the 180o coupling between Fe-3d eg and Fe-3d t2g, leading to ferromagnetic ordering, which has been confirmed by the increase of magnetic moment by 0.13μB per formula unit in the polarized direction. Hence, the magnetization can be altered by the reversal of external electric field.  相似文献   

15.
The electronic structure, the metallic and magnetic properties of metal phosphonate Co[(CH3PO3)(H2O)] have been studied by first-principles calculations, which were based on the density-functional theory (DFT) and the full potential linearized augmented plane wave (FPLAPW) method. The total energy, the spin magnetic moments and the density of the states (DOS) were all calculated. The calculations reveal that the compound Co[(CH3PO3)(H2O)] has a stable metallic antiferromagnetic (AFM) ground state and a half-metallic ferromagnetic (FM) metastable state. Based on the spin distribution obtained from calculations, it is found that the spin magnetic moment of the compound is mainly from the Co2+, with some small contributions from the oxygen, carbon and phosphorus atoms, and the spin magnetic moment per molecule is 5.000μB, which is in good agreement with the experimental results.  相似文献   

16.
DFT calculations are employed to bulk and surface properties of spinel oxide Co3O4. The bulk magnetic structure is calculated to be antiferromagnetic, with a Co2+ moment of 2.631 μB in the antiferromagnetic state. There are three predicted electron transitions O(2p) → Co2+(t2g) of 2.2 eV, O(2p) → Co3+(eg) of 2.9 eV and Co3+(t2g) → Co2+(t2g) of 3.3 eV, and the former two transitions are close to the corresponding experimental values 2.8 and 2.4 eV. The naturally occurring Co3O4 (1 1 0) and (1 1 1) surfaces were considered for surface calculations. For ideal Co3O4 (1 1 0) surfaces, the surface relaxations are not significant, while for ideal Co3O4 (1 1 1) surfaces the relaxation of Co2+ cations in the tetrahedral sites is drastic, which agrees with the experiment observation. The stability over different oxygen environments for possible ideal and defect surface terminations were explored.  相似文献   

17.
The electronic spectra of CsCoCl3 are fit to a Hamiltonian that includes terms for interelectron repulsion, octahedral and trigonal crystal fields, and spin-orbit coupling. The fit adequately accounts for both the optical spectrum and the electronic Raman spectrum. The fitted parameters give empirical estimates of the radial expectation values 〈r?1〉 and 〈r?3〉 as well as the charge on the cobalt. The ground state wave functions generated from the fit are used to calculate the following properties: parallel and perpendicular g factors, Co hyperfine field, 59Co quadrupole splitting, anisotropy of magnetic exchange, the magnetic moment of Co2+, and the spin flop field. The agreement between calculated values and observed values for this variety of independently obtained properties is reasonable in all cases.  相似文献   

18.
We have studied in detail the crystal and magnetic structures of the oxyphosphates MFePO5 (M: divalent transition metal) using neutron powder diffraction as a function of temperature. All of them are isomorphic to the mixed valence compound α-Fe2PO5 with space-group Pnma. No disorder exists between the two metallic sites. The M2+O6 octahedra share edges between them and faces with Fe3+O6 octahedra building zigzag chains running parallel to the b-axis that are connected by PO4 tetrahedra. The topology of this structure gives rise to a complex pattern of super-exchange interactions responsible of the observed antiferromagnetic order. The magnetic structures are all collinear with the spin directed along the b-axis except for M = Co. The experimental magnetic moments of Cu+2 and Ni2+ correspond to the expected ionic value, on the contrary the magnetic moment of Fe3+ is reduced, probably due to covalence effects, and that of Co2+ is greater than the spin-only value indicating a non negligible orbital contribution. Using numerical calculations we have established a magnetic phase diagram adapted for this type of crystal structure and determined the constraints to be satisfied by the values of the exchange interactions in order to obtain the observed magnetic structure as the ground state. Received 15 December 2000 and Received in final form 25 June 2001  相似文献   

19.
Magnetic properties, arising from surface exchange and interparticle interactions of the Fe3O4 (magnetite) nanoparticles, were investigated in the temperature range of 5–300 and 120–300 K using vibrating sample magnetometer technique and electron spin resonance spectroscopy, respectively. The research was based on to figure out the origin of intraparticle interactions and the change of interparticle interactions in wide size range Fe3O4 nanoparticles. The analyses were done for samples having almost same particle size distributions. The average particle sizes were changed in between 30 ± 2 and 34 ± 2 nm. The observed magnetization values were demonstrated the mixture of single-domain size particles, exhibiting both single-domain (SD) and superparamagnetic (SPM) states. The symmetry of resonance curves changed according to the ratio of SD and SPM-stated particles in mixture under located temperature. The changes of anisotropy up to domain state were understood by freezing magnetic moment in glycerol matrix from room temperature to 120 K under 5-kG field. The shift of H R values to higher magnetic fields and the more symmetric resonance spectrum proved the effect of anisotropy and interparticle interactions fields on magnetic behave. In addition, the origin of intra-interaction was exposed from Fe3+ centers and exchange coupling in between Fe2+, Fe3+, and O, and Fe3+ centers found from g factor (g).  相似文献   

20.
A pronounced Curie-like upturn of the magnetic susceptibility χ( T ) of the quasi one-dimensional spin chain compound Ba2V3O9 has been found recently [#!kaul:02!#]. Frequently this is taken as a signature for a staggered field mechanism due to the presence of g-factor anisotropy and Dzyaloshinskii-Moriya interaction. We calculate this contribution within a realistic structure of vanadium 3 d- and oxygen 2 p-orbitals and conclude that this mechanism is far too small to explain experimental results. We propose that the Curie term is rather due to a segmentation of spin chains caused by broken magnetic bonds which leads to uncompensated S = ? spins of segments with odd numbers of spins. Using the finite-temperature Lanczos method we calculate their effective moment and show that ∼ 1% of broken magnetic bonds is sufficient to reproduce the anomalous low-T behavior of χ( T ) in Ba2V3O9. Received 19 December 2002 / Received in final form 29 January 2003 Published online 14 March 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号