首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study is to enhance the resistant starch (RS) content of high amylose rice starch with heat–moisture treatment (HMT) for industrial application. The optimized HMT condition for achieving the highest RS content established using response surface methodology (RSM) was a temperature of 100 °C, moisture content of 24.2%, and a time of 11.5 h. Upon HMT, the RS content increased from 32.1% for native starch to 46.4% in HMT starch with optimized condition. HMT of the starches reduced the solubility and swelling power. The surface of HMT starch granules was more irregular than native starch. The X-ray diffraction (XRD) peak intensity at 2θ = 5° was greatly reduced by HMT, and the peaks at 22.7° and 24.2° were merged. HMT increased the gelatinization temperature and reduced the gelatinization enthalpy. HMT provides a method for the production of high-yield RS2 with high amylose rice starch in industrial application.  相似文献   

2.
Interlaboratory performance statistics was determined for a method developed to measure the resistant starch (RS) content of selected plant food products and a range of commercial starch samples. Food materials examined contained RS (cooked kidney beans, green banana, and corn flakes) and commercial starches, most of which naturally contain, or were processed to yield, elevated RS levels. The method evaluated was optimized to yield RS values in agreement with those reported for in vivo studies. Thirty-seven laboratories tested 8 pairs of blind duplicate starch or plant material samples with RS values between 0.6 (regular maize starch) and 64% (fresh weight basis). For matrixes excluding regular maize starch, repeatability relative standard deviation (RSDr) values ranged from 1.97 to 4.2%, and reproducibility relative standard deviation (RSDR) values ranged from 4.58 to 10.9%. The range of applicability of the test is 2-64% RS. The method is not suitable for products with <1% RS (e.g., regular maize starch; 0.6% RS). For such products, RSDr and RSDR values are unacceptably high.  相似文献   

3.
大米淀粉糊化过程的光谱分析   总被引:3,自引:0,他引:3  
采用衰减全反射傅立叶变换红外光谱仪跟踪测定了不同品种大米淀粉的糊化过程,同时与X-射线衍射仪测定的淀粉结晶度相对比,研究了淀粉颗粒内结晶结构在糊化过程中变化的详细情况.利用红外光谱仪计算出天然大米淀粉及其在糊化过程中各个阶段代表结晶区特征的1047cm-1和代表非晶区特征的1022cm-1两处红外吸收峰强度的比值.结果表明,天然淀粉的结晶区主要由支链淀粉侧链的双螺旋结构所形成;在加热过程中淀粉的结晶结构被破坏,并且直链淀粉含量越高,其结晶结构在糊化过程中破坏越慢,说明直链淀粉能抑制淀粉结晶结构的破坏.利用X-射线衍射仪测定了大米淀粉糊化过程各个阶段的结晶度,进一步验证了淀粉的结晶结构在糊化过程中的损失.虽然,两种测定方法对"结晶度"的定义不同,但对于淀粉结晶程度的测定具有相关性和可比性,能为研究淀粉的糊化行为提供有利的补充信息.  相似文献   

4.
Effect of NaOH treatment on granular hydrolysis of cereal starches was studied and granular starch hydrolyzing enzyme is used to hydrolyze native and NaOH-treated starch for 24?h. The dextrose equivalent value of NaOH-treated starch increased significantly compared to native starch, i.e., 28–38?% for corn, 7–37?% for rice, but no significant increase for corn starch. Scanning electron microscopy micrographs showed that NaOH treatment caused an enlargement of pores and degrades the surface of starch granules. Hydrolyzed-treated starch exhibited rougher surface and more porous granules compared to native starch. The swelling power and pasting properties of NaOH-treated starches were markedly altered after hydrolysis. X-ray pattern of all starches showed no changes and the amylose content decrease significantly after hydrolysis, which could due to extensive degradation of amorphous region. Evidently, NaOH treatment below gelatinization temperature was effective in enhancing the degree of granular starch hydrolysis.  相似文献   

5.
Three sweet potato varieties with purple-, yellow-, and white-fleshed root tubers were planted in four growing locations. Starches were isolated from their root tubers, their physicochemical properties (size, iodine absorption, amylose content, crystalline structure, ordered degree, lamellar thickness, swelling power, water solubility, and pasting, thermal and digestion properties) were determined to investigate the effects of variety and growing location on starch properties in sweet potato. The results showed that granule size (D[4,3]) ranged from 12.1 to 18.2 μm, the iodine absorption parameters varied from 0.260 to 0.361 for OD620, from 0.243 to 0.326 for OD680 and from 1.128 to 1.252 for OD620/550, and amylose content varied from 16.4% to 21.2% among starches from three varieties and four growing locations. Starches exhibited C-type X-ray diffraction patterns, and had ordered degrees from 0.634 to 0.726 and lamellar thicknesses from 9.72 to 10.21 nm. Starches had significantly different swelling powers, water solubilities, pasting viscosities, and thermal properties. Native starches had rapidly digestible starch (RDS) from 2.2% to 10.9% and resistant starch (RS) from 58.2% to 89.1%, and gelatinized starches had RDS from 70.5% to 81.4% and RS from 10.8% to 23.3%. Two-way ANOVA analysis showed that starch physicochemical properties were affected significantly by variety, growing location, and their interaction in sweet potato.  相似文献   

6.
The present study investigated the structure, degradation properties, and combustion behavior of starch from maize, sweet potato, lotus root, and tobacco. Compared with other plant starches, tobacco starch had the smallest size, the highest amylose content and the least crystallinity. Microscale combustion calorimetry (MCC) experiment demonstrated that sweet potato starch showed the maximum peak heat release rate value (888.0 W g?1) while tobacco starch showed the minimum value (316.0 W g?1) and thermogravimetric analysis coupled with Fourier transform infrared spectrometer (TG-FTIR) results showed tobacco starch had good char formability (residue mass: 15.6%) and released more incombustible gaseous products, such as H2O and CO2. These results suggest that the thermal properties of plant starches were mainly influenced by the structural features and amylose content, especially the amylose ratio, and tobacco starch was very promising for application in green flame-retardant material.  相似文献   

7.
The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.  相似文献   

8.
Because of a well defined supramolecular architecture of the native starch granules the preparation of molecularly dispersed starch solutions is achieved only after autoclaving at temperatures of 135 to 160 C. A detailed analysis of static light scattering data allowed the determination of the molecular parameters of both the amylopectin and amylose. The results were confirmed by (1) measurements in the iron sodium tartrate complex FeTNa, (2) by extrapolation of the data obtained with degraded starches to no degradation and (3) by sedimentation field-flow-fractionation sFFF. Above the overlap concentration strong aggregation due to H-bonding commenced and eventually led to gelation. The process is promoted by the amylose content and could be followed by static and dynamic light scattering. Cationic starches and cationic amyloses display remarkably different behavior. The branched amylopectin expanded uniformly when the ionic strength was lowered but the corresponding amylose exhibited an unusual helix-disorder transition.  相似文献   

9.
The effects of black tea polyphenol extract (BTPE) on the retrogradation of starches from different plant sources were studied using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). DSC analysis shows that the gelatinization temperature of maize starch and starches from different rice varieties increased with increasing BTPE level. After storage at 4 °C, BTPE at a concentration of 15% markedly retarded the retrogradation of maize starch and starches from different rice varieties. Native maize starch and starches from different rice varieties showed typical A-type X-ray diffraction patterns, while native potato starch showed a typical B-type X-ray diffraction pattern. Adding BTPE significantly affected the crystalline region and intensities of X-ray diffraction peaks of maize and rice starch granules. It is concluded that adding BTPE markedly inhibits the retrogradation of maize starch and starches from different rice varieties, but has no significant influence on the gelatinization and retrogradation characteristics of potato starch.  相似文献   

10.
Differential scanning calorimetry (DSC), acidic hydrolysis and different physico-chemical approaches were used to study thermodynamic and structural characteristics of starches from near-isogenic wheat lines to establish the effect of different combinations of active granule-bound starch synthase isoforms, taking part in amylose biosynthesis, on the structure and thermodynamic properties of starches. Obtained results suggest that the effect of different GBSS I combinations is realized through altered amylose localization within starch granules, reflecting in changes of melting temperature of crystalline lamellae (T m) and rates of acidic hydrolysis. It has also been demonstrated that changes in T m values for native wheat starches are determined by amylose content in amylopectin clusters.  相似文献   

11.
High-sensitivity differential scanning calorimetry (HSDSC) and small-angle X-ray scattering (SAXS) were used to investigate the structural characteristics of starch granules with different amylose content extracted from near-isogenic wheat lines with different combinations of active granule-bound starch synthase (GBSS I) isoforms. Paracrystalline diffraction model, ‘two-state’ model of starch melting and other physico-chemical approaches were used to estimate the sizes of amylopectin clusters, the thicknesses of crystalline lamellae and the structure of amylopectin defects for investigated wheat starches. The joint analysis of SAXS and DSC data has shown that the size of amylopectin cluster, the thickness of crystalline lamellae and the structure of amylopectin defects do not depend on the differences in combinations of active GBSS I isozymes. The data obtained supposed that the amylopectin cluster size and the thickness of crystalline lamellae are, generally, the universal structural parameters for wheat starches. Additionally, the data obtained suggest that increase of amylose content is accompanied by accumulation of both amylose tie-chains, located as defects in crystalline lamellae, and amylose chains oriented transversely to the lamella stack within amorphous lamellae. Disordered ends of amylopectin double helices and/or pre-existing double helices not participating in formation of crystals are considered as amylopectin defects arranged in crystalline lamellae. The relationship between structure of wheat starches extracted from near-isogenic lines and their thermodynamic properties was recognized.  相似文献   

12.
Starch is the most abundant carbohydrate in legumes (22–45 g/100 g), with distinctive properties such as high amylose and resistant starch content, longer branch chains of amylopectin, and a C-type pattern arrangement in the granules. The present study concentrated on the investigation of hydrolyzed faba bean starch using acid, assisted by microwave energy, to obtain a possible food-grade coating material. For evaluation, the physicochemical, morphological, pasting, and structural properties were analyzed. Hydrolyzed starches developed by microwave energy in an acid medium had low viscosity, high solubility indexes, diverse amylose contents, resistant starch, and desirable thermal and structural properties to be used as a coating material. The severe conditions (moisture, 40%; pure hydrochloric acid, 4 mL/100 mL; time, 60 s; and power level, 6) of microwave-treated starches resulted in low viscosity values, high amylose content and high solubility, as well as high absorption indexes, and reducing sugars. These hydrolyzed starches have the potential to produce matrices with thermo-protectants to formulate prebiotic/probiotic (symbiotic) combinations and amylose-based inclusion complexes for functional compound delivery. This emergent technology, a dry hydrolysis route, uses much less energy consumption in a shorter reaction time and without effluents to the environment compared to conventional hydrolysis.  相似文献   

13.
Starch samples with 0% or 30% amylose were subjected to four different liquefaction enzyme treatments (at various temperature and pH conditions) followed by simultaneous saccharification and fermentation (SSF). Resistant starch (RS) measurements were conducted for the initial starch sample, after liquefaction and after SSF. Initial RS was higher for 30% amylose starch samples (16.53 g/100 g sample) compared with 0% amylose (0.76 g/100 g sample). Higher initial RS resulted in lower conversion of starch into sugars and lower final ethanol yields. The four enzymes hydrolyzed RS, but in varying amounts. Higher temperature liquefaction hydrolyzed a larger portion of RS, resulting in higher ethanol concentrations and lower final residual solids (non-fermentables), whereas lower temperature liquefaction hydrolyzed a smaller portion of RS and resulted in lower ethanol concentrations and higher final residual solids. Decreases in resistant starch after high temperature liquefaction were 55% to 74%, whereas low temperature liquefaction decreases were 11% to 43%. For all enzyme treatments, RS content of starch samples decreased further after SSF.  相似文献   

14.
The objective of this work was to investigate and compare the structural and physicochemical properties of Dioscorea opposita Thunb. flour(DF), starch(DS) and purified starch(PDS). DS and PDS showed higher total starch and amylose content as compared to DF. Starch granules of DF were oval shape with rough surface while DS and PDS were relatively smooth by SEM. According to XRD measurements, FT-IR spectroscopy and 13 C CP/MAS NMR spectroscopy, all samples displayed C-type crystalline pattern, and PDS displayed the highest relative crystallinity and short-range order structure. However, DF contained the greatest content of the amorphous-phase. DF displayed the absorption peaks at 1730 and 1560 cm~(-1) related to the characteristic groups of lipid and protein using FT-IR spectroscopy. Furthermore, DF exhibited significantly higher pasting temperature while DS displayed the great peak and breakdown viscosity, as well as PDS had the highest setback and final viscosity, presumably due to the chemical composition and structural differences. DF exhibited the highest gelatinization temperature whereas PDS displayed the greatest gelatinization enthalpy. The pasting and gelatinization properties of flour and starch might be related to the relative crystallinity, short-range order structure or the interactions between starch and its associated compounds. The results allow the improvement in the manufacture of Dioscorea opposita Thunb. flour and starch with desirable pasting and gelatinization properties.  相似文献   

15.
《Analytical letters》2012,45(15):3049-3058
ABSTRACT

Waxy (essentially amylose-free) maize starch was chemically modified to varying degrees by treatment with 3-chloro-2-hydroxypropyltrimethyl ammonium chloride (CHPTAC), and the degree of cationic modification was determined by a standard wet chemistry method. FT-Raman spectra of the modified starches were taken, and a characteristic Raman band ~761 cm?1 was found. This 761 cm?1 Raman band's intensity depended on the level of cationic modification of the starch. The ratio of intensity of the ~761 cm?1 band to a ~715 cm?1 C-C stretch Raman band (used as an internal standard) was plotted versus the amount of cationic modification derived by titration analysis, and a linear fit was obtained with a correlation of 0.998. The FT-Raman spectroscopy method presented here demonstrates a rapid non-destructive way to determine the level of cationic modification of waxy maize starch, and should be suitable for use with cationic modified starches of any amylose content.  相似文献   

16.
The effects of added unmodified amylopectin starch, modified amylopectin starch and amylose starch on the formation and properties of emulsions (4 wt.% corn oil) made with an extensively hydrolysed commercial whey protein (WPH) product under a range of conditions were examined. The rate of coalescence was calculated based on the changes in the droplet size of the emulsions during storage at 20 degrees C. The rates of creaming and coalescence in emulsions containing amylopectin starches were enhanced with increasing concentration of the starches during storage for up to 7 days. At a given starch concentration, the rate of coalescence was higher in the emulsions containing modified amylopectin starch than in those containing unmodified amylopectin starch, whereas it was lowest in the emulsions containing amylose starch. All emulsions containing unmodified and modified amylopectin starches showed flocculation of oil droplets by a depletion mechanism. However, flocculation was not observed in the emulsions containing amylose starch. The extent of flocculation was considered to correlate with the rate of coalescence of oil droplets. The different rates of coalescence could be explained on the basis of the strength of the depletion potential, which was dependent on the molecular weight and the radius of gyration of the starches. At high levels of starch addition (>1.5%), the rate of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase caused by the starch.  相似文献   

17.
In order to explore the processing and application potential of Chinese yam starch, nine kinds of Chinese yam starch (GY11, GY5, GY2, GXPY, LCY, SFY, MPY, SYPY, ASY) from South China were collected and characterized. The chemical composition, rheological properties, thermal properties, and in vitro starch digestion were compared, and the correlation between the structure and processing properties of these yam starches was analyzed using Pearson correlation. The results show that GY2 had the highest amylose content of 28.70%. All the yam starches were similarly elliptical, and all the yam starch gels showed pseudoplastic behavior. Yam starches showed similar pasting temperatures and resistant starch content, but SYPY showed the largest particle size (28.4 μm), SFY showed the highest setback (2712.33 cp), and LCY showed the highest peak viscosity (6145.67 cp) and breakdown (2672.33 cp). In addition, these yam starches also showed different crystal types (A-type, B-type, C-type), relative crystallinity (26.54–31.48%), the ratios of 1045/1022 cm−1 (0.836–1.213), pasting properties, and rheological properties, so the yam starches have different application potentials. The rheological and pasting properties were related to the structural properties of starch, such as DI, Mw, and particle size, and were also closely related to the thermodynamic properties. The appropriate processing methods and purposes of the processed products of these yam starches can be selected according to their characteristics.  相似文献   

18.
《Analytical letters》2012,45(13):2703-2711
ABSTRACT

Waxy (essentially amylose-free) maize starch was chemically modified to varying degrees by treatment with succinic anhydride, and the degree of substitution was determined by a standard wet chemistry method. FT-Raman spectra of the modified starches were obtained, and indicated a characteristic ~1730 cm?1 C=O stretch Raman band whose intensity was dependent on the degree of succinylation. The ratio of intensity of the ~1730 cm?1 band to a ~940 cm?1 C-C stretch Raman band (used as an internal standard) was plotted against the degree of succinylation determined by titration, and a linear fit was obtained with a correlation of 0.998. Hence FT-Raman spectroscopy represents a rapid non-destructive method to determine the degree of succinylation of modified waxy maize starch, and should be suitable for use with succinylated starches of any amylose content.  相似文献   

19.
The hierarchical granule structure of starches with different amylose content extracted from winter wheat was investigated using light microscopy (LM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXS), high-sensitivity differential scanning calorimetry (HS DSC) and different thermodynamic approaches. Morphology (size, size distribution and shape), crystallinity of native granules with different amylose content (1.5-39.5%), as well as the cooperative melting unit, thickness of crystalline lamellae, heat capacity drop related to hydration during melting of native granules, and thermodynamic parameters related to the surface of crystalline lamellae were determined. The relationship between structure and thermodynamic properties of mutant wheat starches is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
In the present study, isothermal microcalorimetry was introduced as a tool to investigate properties of starch retrogradation during the first 24 h. The study was made on purified amylose and amylopectin from corn, as well as on native starches, such as wheat, potato, maize, waxy maize and amylomaize, differing in their amylose content. The results were obtained in the form ofP-t traces (thermal powervs. time), and integration of these traces gave a net exothermic enthalpy of reaction, caused by the crystallization of amylose and amylopectin. TheP-t traces reflected the quantities of amylose and amylopectin in the starch studied. Depending on the amylose content and the botanical source of the starch, the rate of crystallization of amylose was high and predominated over that of amylopectin during the first 5–10 h. The contribution from amylose crystallization to the measured exothermic enthalpy was very substantial during this period. After 10 h, amylose crystallized at a lower constant rate. During the first 24 h, amylopectin crystallized at a low steady rate. The exothermic enthalpies obtained by the isothermal microcalorimetric investigations during the first 24 h of retrogradation were generally low in relation to the endothermic melting enthalpies observed by differential scanning calorimetry (DSC) measurements after 24 h of storage. The discrepancies in enthalpy values between the two methods are discussed in relation to phase separation and the endothermic effects owing to the decrease in polymer-water interactions when polymer-rich regions in the starch gel separate. Besides the exothermic enthalpies obtained, theP-t traces also made it possible to study the initial gelation properties of amylose from different botanical sources. The present study further demonstrated that isothermal microcalorimetry can provide a possible way to investigate the antistaling effect of certain polar lipids, such as sodium dodecylsulphate (SDS) and 1-monolauroyl-rac-glycerol (GML), when added to starches of different botanical origin. The net exothermic heat of reaction for starch retrogradation during the first 24 h was decreased when GML or SDS was added to the starch gels. The recordedP-t traces also showed how the effect of the added lipid influenced different periods during the first 24 h of starch retrogradation, and that the effect depended mainly on the amylose content, the botanical source of the starch, and the type of lipid used. When GML or SDS was added to waxy maize, the isothermal microcalorimetric studies clearly indicated some interaction between amylopectin and the polar lipids. These results concerning the action of anti-staling agents are further discussed in relation to the helical inclusion complexes formed between amylose-polar lipid and amylopectin-polar lipid.The authors thank Eva Qvarnström at the Dept. of Thermochemistry and Eva Tjerneld at the Dept. of Food Technology for valuable practical assistance. Financial support was obtained from the Swedish Council for Forestry and Agricultural Research (SJFR) and the Swedish Farmer's Foundation for Agricultural Research (Stiftelsen Lantbruksforskning).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号