首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
过去的十多年里,聚合物/层状硅酸盐纳米复合材料在制备、结构与性能方面的研究取得了长足的进步。一些聚合物基的纳米复合材料已实现工业生产,在汽车、家电和包装等领域得到应用。环境稳定性是聚合物材料应用的一个重要方面。本文从材料的耐候性、耐热性和阻燃性能的角度出发,评述了近年来聚合物/层状硅酸盐纳米复合材料在紫外光降解、热降解和燃烧性能方面的研究进展,以期对纳米复合材料的基础研究及应用开发有所裨益。  相似文献   

2.
具有优良综合性能的聚合物基层状硅酸盐纳米复合物是当前材料科学研究的重要方向。本文介绍了以聚氨酯材料为基质的聚合物基层状硅酸盐纳米复合物的制备技术、表征手段、物理化学性能以及结构形态,对该复合材料的工业开发前景、国内外研究现状以及发展趋势进行了分析。  相似文献   

3.
可降解聚合物/层状硅酸盐纳米复合材料的研究进展   总被引:1,自引:0,他引:1  
易菊珍  张黎明 《高分子通报》2006,171(3):31-36,64
作为一类性能优良的环保功能材料,生物降解性聚合物/层状硅酸盐(BPLS)纳米复合材料正日益引起人们的关注。本文综述了BPLS纳米复合材料的制备途径、结构表征方法及其性能特点,同时对其应用前景作了展望。  相似文献   

4.
近 2 0年来 ,聚合物 /层状无机物纳米复合材料引起了广泛关注 ,与聚合物材料相比 ,该类纳米复合材料在力学、热稳定性、阻燃、气体阻隔等性能方面都有显著增强 .但所报道的绝大部分无机物均采用蒙脱土为代表的层状硅酸盐[1~ 3] ,而以层状双氢氧化物 (Layered double hydroxide,LDH)为基础制备的聚合物 /层状无机物纳米复合材料的报道极少 .LDH是由水镁石结构中的二价阳离子 (M2 + )被三价阳离子 (M3+ )取代而形成的 ,层上产生的剩余正电荷被吸附在层间的阴离子平衡 .与层状硅酸盐相比 ,L DH层间电荷密度高 ,层与层之间相互作用强 ,导…  相似文献   

5.
聚丙烯/层状硅酸盐纳米复合材料的制备、结构和性能   总被引:10,自引:0,他引:10  
聚丙烯/层状硅酸盐纳米复合材料可通过丙烯单体插层聚合、聚丙烯溶液插层和聚丙烯熔融插层等方法制备,得到插层型或剥离型纳米复合材料,形成了与传统填充型聚合物复合材料不同的微观结构,其机械性能,热性能,阻隔性能和流变性能等明显提高,由于聚丙烯的非极性及层状硅酸盐纳米复合材料制备方法的特殊性,该研究具有一定的理论价值。  相似文献   

6.
壳聚糖基层状硅酸盐纳米复合材料   总被引:2,自引:0,他引:2  
壳聚糖基层状硅酸盐纳米复合材料是采用简单的溶液插层法,将壳聚糖及其衍生物插层进入层状硅酸盐的纳米层间而获得的有机无机纳米杂化材料。该材料偶合了壳聚糖及其衍生物和层状硅酸盐的协同优势,为壳聚糖的研发应用开辟了新方向和新途径。本文在对壳聚糖和层状硅酸盐的特性及应用进行简单介绍的基础上,重点综述了壳聚糖基层状硅酸盐纳米复合材料的制备方法、插层机理及应用现状,并提出了目前存在的主要问题。  相似文献   

7.
可膨胀层状硅酸盐粘土应用研究进展   总被引:4,自引:0,他引:4  
综述了可膨胀层次状硅酸盐的粘土在催化,水污染控制,导电材料,贮藏材料及纳米级复合材料等方面开发应用研究的近期进展。  相似文献   

8.
纳米晶/聚合物太阳能电池作为一种新型光伏器件成为近年来的研究热点。通过改变纳米晶的形貌及尺寸来调节材料本身的带隙从而改善光吸收特性,并且无机半导体材料本身具有高的电子迁移率和良好的热稳定性,以上特性使该类电池具有巨大的发展潜力。本文从纳米晶的种类、形状和尺寸、表面配体及纳米晶与聚合物界面性能等方面综述了纳米晶/聚合物太阳能电池的研究现状。纳米晶形貌、太阳光利用率和载流子传输效率是影响电池效率的主要因素。文中指出开展窄带隙纳米晶的合成、优化纳米晶/聚合物电池结构、解析纳米晶与聚合物界面激子传输机理等改善该类电池性能的途径,旨在为提高纳米晶/聚合物太阳能电池的效率提供借鉴经验。  相似文献   

9.
纳米反应器的研究进展   总被引:9,自引:0,他引:9  
介绍了近年来见诸于研究中的四种纳米反应器,分别是反相微乳液,嵌段共聚物,多孔材料和层状硅酸盐,总结了这些纳米反应器的研究进展并讨论了它们的应用前景。  相似文献   

10.
剥离型硅橡胶/黏土纳米复合材料研究   总被引:10,自引:0,他引:10  
利用层状硅酸盐制备有机 无机纳米复合材料是当前人们研究的热点[1,2 ] ,这类材料具有较常规聚合物 无机填料复合材料无法比拟的优点 ,可以明显改善高分子材料的物理机械性能、热稳定性、气体阻隔性、阻燃性、导电性、光学性等 .一般来说 ,聚合物 层状硅酸盐 (Polymerlayeredsilicate ,PLS)纳米复合材料可分为插层型和剥离型两种类型 .插层型纳米复合材料即聚合物插入到硅酸盐层中 ,硅酸盐在近程仍保持原有的有序晶体结构 ,在远程则是无序的 .对弹性体而言 ,硅酸盐含量在插层型杂化材料中的含量比较高 ,力学性能…  相似文献   

11.
Covalently bonded layered silicated/polystyrene nanocomposites were synthesized via atom transfer radical polymerization in the presence of initiator‐modified layered silicate. The resulting nanocomposites had an intercalated and partially exfoliated structure, as confirmed by X‐ray diffraction and transmission electron microscopy. The thermal properties of the nanocomposites improved substantially over those of neat polystyrene. In particular, a maximum increase of 35.5 °C in the degradation temperature was displayed by these nanocomposites. Additionally, the surface elastic modulus and hardness of these nanocomposites were more than double those of pure polystyrene. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 534–542, 2005  相似文献   

12.
Thermoplastic Elastomer Vulcanizates (TPEV) prepared by dynamic vulcanizing process, is a material which has both the properties of a vulcanized rubber (elasticity) and thermoplastics (processibility). TPEV is cost effective for its good processibility and eco-friendly for its recyclability. TPEV/layered silicate nanocomposites can give a greater advantage of weight reduction which is a key issue in automotive industry because of fuel efficiency. Applying TPEV/layered silicate nanocomposites, the amount of reinforcement mineral filler can be reduced greatly compared to general TPEV which is reinforced by talc or kaolin clay. The mechanical strengths of TPEV/layered silicate nanocomposites using small amounts of MMT is similar to those of general TPEV using larger amounts of general filler. Various evaluations such as degree of crosslinking, degree of filler dispersion (XRD and TEM), surface hardness and tensile properties were carried out for the TPEV/layered silicate nanocomposites.  相似文献   

13.
A novel method is described for the preparation of nanocomposites comprising a high performance rubber for tire application and layered silicates clay. In this work nanocomposites of solution‐styrene butadiene rubber (S‐SBR) with montmorillonite layered silicate were prepared with carboxylated nitrile rubber (XNBR), a polar rubber, as a compatibilizer. A sufficient amount of organomodified layered silicate was loaded in carboxylated nitrile rubber (XNBR) and this compound was blended as a master batch in the S‐SBR. Mixed intercalated/exfoliated morphologies in the nanocomposite are evinced by X‐ray diffraction measurements and transmission electron microscopy. Dynamic mechanical analysis also supports the compatibility of the composites. A good dispersion of the layered silicate in the S‐SBR matrix was reflected from the physical properties of the nanocomposites, especially in terms of tensile strength and high elongation properties.  相似文献   

14.
The academic and industrial aspects of the preparation, characterization, mechanical and materials properties, crystallization behavior, melt rheology, and foam processing of pure polylactide (PLA) and PLA/layered silicate nanocomposites are described in this feature article. Recently, these materials have attracted considerable interest in polymer science research. PLA is linear aliphatic thermoplastic polyester and is made from agricultural products. Hectorite and montmorillonite are among the most commonly used smectite‐type layered silicates for the preparation of nanocomposites. Smectites are a valuable mineral class for industrial applications because of their high cation exchange capacities, surface area, surface reactivity, adsorptive properties, and, in the case of hectorite, high viscosity, and transparency in solution. In their pristine form, they are hydrophilic in nature, and this property makes them very difficult to disperse into a polymer matrix. The most common way to overcome this difficulty is to replace interlayer cations with quaternized ammonium or phosphonium cations, preferably with long alkyl chains. In general, polymer/layered silicate nanocomposites are of three different types: (1) intercalated nanocomposites, in which insertion of polymer chains into the layered silicate structure occurs in a crystallographically regular fashion, regardless of polymer to layered silicate ratio, with a repeat distance of few nanometer; (2) flocculated nanocomposites, in which intercalated and stacked silicate layers are sometimes flocculated due to the hydroxylated edge–edge interactions between the silicate layers; (3) exfoliated nanocomposites, in which individual silicate layers are uniformly distributed in the polymer matrix by average distances that totally depend on the layered silicate loading. This new family of composite materials frequently exhibits remarkable improvements in its material properties when compared with those of virgin PLA. Improved properties can include a high storage modulus both in the solid and melt states, increased flexural properties, a decrease in gas permeability, increased heat distortion temperature, an increase in the rate of biodegradability of pure PLA, and so forth.

Illustration of the biodegradability of PLA and various nanocomposites.  相似文献   


15.
Polypropylene‐layered silicate nanocomposites consisting of three components—pure polypropylene, maleated polypropylene, and organically modified silicate—were prepared by the melt‐intercalation method to investigate melt‐extensional properties such as melt strength, neck‐in test, and orientation behavior. The nanocomposites showed an enhanced tensile modulus, enhanced storage modulus, much enhanced melt tension, and reduced neck‐in during the melt processing as compared with neat polymer. The uniaxial drawing induced the silicate surface to align parallel to the sheet surface. The c and a* axes of the polypropylene crystals were bimodally oriented to the flow direction, and the b axes were oriented to the thickness direction. The bimodal orientation of the polypropylene crystal was enhanced with the concentration of silicates. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 158–167, 2005  相似文献   

16.
The relationship between nanostructure and properties in polysiloxane layered silicate nanocomposites is presented. Solvent uptake (swelling) in dispersed nanocomposites was dramatically decreased as compared to conventional composites, though intercalated nanocomposites and immiscible hybrids exhibited more conventional behavior. The swelling behavior is correlated to the amount of bound polymer (bound rubber) in the nanocomposites. Thermal analysis of the bound polymer chains showed an increase and broadening of the glass‐transition temperature and loss of the crystallization transition. Both modulus and solvent uptake could be related to the amount of bound polymer formed in the system. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1595–1604, 2000  相似文献   

17.
The study describes the effect of the layered silicate content and its dispersion on the mechanical behavior of poly(ε-caprolactone) (PCL) nanocomposites and their corresponding changes during the degradation in a phosphate buffer at 37 °C. Two nanocomposite systems were compared: intercalated and exfoliated nanocomposites. They were prepared by melt-compounding of a high-molecular-weight PCL with in situ polymerized silicate masterbatches or an organophilized montmorillonite. It has been shown that Young modulus increases with the increasing silicate content and at the same time, the highest increase in the modulus is observed for the exfoliated system. The stiffness enhancement is predominantly caused by the dispersed inorganic phase but also supported by the contribution of the low-molecular-weight PCL fraction, which comes from the masterbatch, to the total degree of crystallinity. In contrast, the increase in the yield stress is driven mainly by the present low-molecular-weight PCL fraction with higher crystallinity. The degradation behavior reflects both the presence of the layered silicate as well as the low-molecular-weight PCL fraction. Their presence accelerates the degradation in the phosphate buffer at 37 °C.  相似文献   

18.
聚合物/层状硅酸盐插层纳米复合材料的研究   总被引:5,自引:2,他引:3  
简述了聚合物 /层状硅酸盐插层纳米复合材料方面的研究进展。阐述了层状硅酸盐的结构与性质以及纳米复合材料形成过程的热力学原理。重点介绍了尼龙、聚丙烯等聚合物的层状硅酸盐插层纳米复合材料的现状和技术发展趋势  相似文献   

19.
In this study, cyclic olefin copolymer (COC)/layered silicate nanocomposites (CLSNs) were prepared by the intercalation of COC polymer into organically‐modified layered silicate through the solution mixing process. Both X‐ray diffraction data and transmission electron microscopy images of CLSNs indicate most of the swellable silicate layers were disorderedly intercalated into the COC matrix. The effect of layered silicate on the mechanical and barrier properties of the fabricated nanocomposites shows significant improvements in the storage modulus and water permeability when compared with that of neat COC matrix. Surfaces of COC and CLSN films were modified by a mixture of oxygen (O2) and nitrogen (N2) plasmas with various treated times, system pressures, and radio frequency (RF) powers. The surfaces of plasma‐modified COC and CLSN were investigated using scanning probe microscopy and contact‐angle measurements. The exposure of the COC and CLSN film to the plasmas led to the combination of etching reactions of polymer surface initiated by plasma and the following addition reactions of new functional groups onto polymer surfaces to change the topology of COC film surfaces. The surface roughness was closely related to how high and how long the RF power was input into the system. The plasmas also led to changes in the surface properties of the CLSN surfaces from hydrophobic to hydrophilic; and the contact angle of water on the surface decreases. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2745–2753, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号