首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for determining coumarin, vanillin, and ethyl vanillin in vanilla extract products. A product is diluted one-thousand-fold and then analyzed by reversed-phase liquid chromatography using a C18 column and a mobile phase consisting of 55% acetonitrile-45% aqueous acetic acid (1%) solution at a flow rate of 1.0 mL/min. Peaks are detected with a UV detector set at 275 nm. Vanilla extracts were spiked with 250, 500, and 1000 microg/g each of coumarin, vanillin, and ethyl vanillin. Recoveries averaged 97.4, 97.8, and 99.8% for coumarin, vanillin, and ethyl vanillin, respectively, with coefficient of variation values of 1.8, 1.3, and 1.3%, respectively. No significant difference was observed among the 3 spiking levels. A survey of 23 domestic and imported vanilla extract products was conducted using the method. None of the samples contained coumarin. The surveyed samples contained between 0.4 to 13.1 and 0.4 to 2.2 mg/g vanillin and ethyl vanillin, respectively.  相似文献   

2.
A LC-MS method was developed for the determination of coumarin, vanillin, and ethyl vanillin in vanilla products. Samples were analyzed using LC-electrospray ionization (ESI)-MS in the positive ionization mode. Limits of detection for the method ranged from 0.051 to 0.073 microg mL(-1). Using the optimized method, 24 vanilla products were analyzed. All samples tested negative for coumarin. Concentrations ranged from 0.38 to 8.59 mg mL(-1) (x =3.73) for vanillin and 0.33 to 2.27 mg mL(-1) (x =1.03) for ethyl vanillin. The measured concentrations are compared to values calculated using UV monitoring and to results reported in a similar survey in 1988. Analytical results, method precision, and accuracy data are presented.  相似文献   

3.
Summary Thin layer chromatography on silica gel high performance layers and automated multiple development was used to separate the polar aromatic flavor compounds vanillin, ethyl vanillin, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, 4-hydroxybenzyl alcohol, vanillic acid, coumarin, piperonal, anisic acid, and anisaldehyde commonly found in extracts of natural and artificial vanilla flavors. The ratio of 4-hydroxybenzoic acid, 4-hydroxybenzaldehyde and vanillic acid to vanillin in natural vanilla extracts was used to confirm the authenticity of extracts purchased in the United States of America and the United Kingdom. Natural vanilla extracts purchased in Mexico and Puerto Rico were identified as counterfeit products based on changes in the above ratio and the presence of synthetic flavor compounds such as ethyl vanillin and coumarin. It is also demonstrated that the proposed method is suitable for the determination of natural and synthetic vanilla flavors in solvent extracts from food, beverage and confectionery products. The main advantage of thin layer chromatography for the analysis of vanilla extracts and food stuffs flavored with vanilla is its high sample throughput since sample preparation requirements are minimal and multiple samples can be separated simultaneously.  相似文献   

4.
Results of a determination of vanillin and its homologue, ethylvanillin (vanillal), in food flavorings by thin-layer chromatography are presented. A mixture of hexane and ethyl acetate with a volume ratio 9 : 1–8 : 2 is preferable as an eluent for the separation of the flavorings. A mixture of heptanone, ethanol, and sulfuric acid (a volume ratio 4 : 5 : 1) was proposed as a developing agent. Different eluents and developing agents used for the separation of vanillin and ethylvanillin were compared; the results are presented. Solutions of vanillin and ethylvanillin and commercially produced vanilla flavorings were analyzed. The results can be used in the monitoring of the composition of vanilla flavorings, as well as for the authentication of artificial or identical-to-natural flavorings.  相似文献   

5.
This paper describes a reversed-phase liquid chromatographic method for the determination of vanillin, associated natural aromatic compounds and/or synthetic precursors, ethyl vanillin, and coumarin, a commonly encountered adulterant in nonbeverage and beverage alcohol products using a ternary gradient mobile phase. The compounds were separated on a Nova-Pak C18 column by using water, methanol, and tetrahydrofuran as the mobile phase. Measurements were made by using a photodiode array detector at 275 nm. The choice of the mobile phase and the column provides baseline resolution of vanillin and the associated aromatic compounds commonly found in vanilla-flavoring material. Because this method provides low-level detection/quantitation, it is suitable for the characterization of vanilla flavoring materials that are currently added to vanilla flavored beverage alcohol products.  相似文献   

6.
Abstract

High performance silica gel TLC was used to qualitatively and quantitatively determine coumarin in real and artificial vanilla flavorings. Coumarin was detected as a fluorescent or colored zone and quantified by scanning with a densitometer. Recoveries and reproducibility values are reported for fortified samples. The method was applied to a qualitative survey of domestic vanilla samples and quantification of coumarin in an adulterated foreign sample. The result of this determination was verified by standard addition analysis. The method was also applied to the determination of coumarin in a spiked wine sample.  相似文献   

7.
A disposable electrochemical sensor was developed for the detection of vanillin in vanilla extracts and in commercial products. An analytical procedure based on square-wave voltammetry (SWV) was optimised and a detection limit of 0.4 μM for vanillin was found. A relative standard deviation of 2% was calculated for a vanillin concentration of 100 μM. The method was applied to the determination of vanillin in natural concentrated vanilla extracts and in final products such as yoghurt and compote. The obtained results were compared with those provided by a reference method based on HPLC. The electrochemical behaviour of other compounds (vanillic acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, etc.), generally present in natural oleoresins, were also studied, to check for interferences with respect to the vanillin voltammetric signal.  相似文献   

8.
A new method to quick extraction of vanillin and p-hydroxybenzaldheyde (PHB) of vanilla beans from vanilla fragans is proposed. Samples were irradiated with microwaves energy to accelerate the extraction process and photometric monitoring was performed at 348 and 329 nm (vanillin and PHB, respectively). The simultaneous determination of vanillin and PHB from extracts was performed using the Vierordt's method, which showed a precision, expressed as relative standard deviation, smaller 2.5% for both analytes. Conditions such as microwaves irradiation power, number of irradiation and non-irradiation cycles, irradiation time and ethanol concentration were optimized by means of multivariate screening that showed that irradiation power and number of irradiation cycles are the most significant condition in the vanilla extraction process. The focused microwave-assisted extraction (FMAE) was applied to commercial (dried vanilla beans from fresh green vanilla beans), lyophilised and dried (commercial vanilla dried at 135 °C in oven) vanilla beans samples. The results showed that the extraction of vanillin and PHB in the commercial vanilla samples were higher than in dried and lyophilised samples. With the proposed FMAE a decrease in the extraction time of 62 times and an increase in the vanillin and PHB concentrations between 40 and 50% with respect to the official Mexican extraction method, were obtained.  相似文献   

9.
A commercially available and disposable multiwalled carbon nanotube screen‐printed electrode (CNT‐SPE) was employed to detect and determine vanillin compounds in natural vanilla. The voltammetric behaviour of vanillin at the CNT‐SPE is examined and shown to be a sensitive method for quantifying vanillin. Linear calibration for vanillin in the range of 2.5–750 μM was obtained with a detection limit of 1.03 μM and a quantification limit of 3.44 μM. The developed method comprises a simple sample preparation method and a sensitive electrochemical detection for the quantification of vanillin in vanilla pods and is an easy and simple procedure for manufacturers and consumers.  相似文献   

10.
Five vanilla-related flavors of food significance, vanillic alcohol (VOH), ethyl maltol (EMA), maltol (MAL), ethyl vanillin (EVA) and vanillin (VAN), were separated using CE microchips with electrochemical detection (CE-ED microchips). A +2 kV driving voltage for both injection and separation operation steps, using a borate buffer (pH 9.5, 20 mM) and 1 M nitric acid in the detection reservoir allowed the selective and sensitive detection of the target analytes in less than 200 s with reproducible control of EOF (RSD(migration times)<3%). The analysis in selected real vanilla samples was focusing on VAN and EVA because VAN is a basic fragrance compound of the vanilla aroma, whereas EVA is an unequivocal proof of adulteration of vanilla flavors. Fast detection of all relevant flavors (200 s) with an acceptable resolution (R(s) >1.5) and a high accuracy (recoveries higher than 90%) were obtained with independence of the matrices and samples examined. These results showed the reliability of the method and the potential use of CE microchips in the food control field for fraudulent purposes.  相似文献   

11.
In this study, polyvinyl alcohol (PVA) nanofibers with ethyl vanillin as an active compound were prepared using electrospinning technique. The final products of electrospinning process were in the form of nanofibers films. PVA/ethyl vanillin nanofibers, having fibers diameters in the range 100–1700 nm, were successfully electrospun from ethanol/water mixture of PVA and ethyl vanillin. The effects of immobilization process on ethyl vanillin thermal properties were investigated by differential scanning calorimetry (DSC). The results of DSC showed significant influence of immobilization process on thermal properties of ethyl vanillin. It was noticed that melting point of immobilized ethyl vanillin was lower (~55 °C) compared to free flavor (~77 °C). Our results showed that films based on PVA/ethyl vanillin nanofibers are mechanically stable.  相似文献   

12.
超高效液相色谱-串联质谱法同时测定食品中4种常用香精   总被引:2,自引:0,他引:2  
杨华梅  杭莉 《色谱》2015,33(3):250-255
建立了超高效液相色谱-串联质谱法同时测定食品中香兰素、乙基香兰素、麦芽酚和乙基麦芽酚4种香精的方法。样品用水提取,固相萃取小柱净化,目标化合物采用UPLCTMBEH C18色谱柱(50 mm×2.1 mm, 1.7 μm)分离,以甲醇和含0.002 mol/L乙酸铵及0.1%(v/v)甲酸的水溶液为流动相进行梯度洗脱,采用电喷雾离子源电离、正离子多反应监测模式质谱检测。4种香精在5~500 μg/L或10~1000 μg/L质量浓度范围内线性良好,相关系数均在0.9995~0.9998之间;回收率为75.8%~116%,相对标准偏差(RSD, n=6)为1.58%~4.01%。该方法灵敏、准确,检测范围广,分析速度快,适合食品中香兰素、乙基香兰素、麦芽酚和乙基麦芽酚4种香精的检测。  相似文献   

13.
A novel molecularly imprinted polymer (MIP) for vanillin was prepared by photo initiated polymerization in dichloromethane using a mixed semi-covalent and non-covalent imprinting strategy. Taking polymerisable syringaldehyde as “dummy” template, acrylamide was chosen as functional monomer on B3LYP/6-31+G(d,p) density functional theory computational method basis with counterpoise. The binding parameters for the recognition of vanillin on imprinted polymers were studied with three different isotherm models (Langmuir, bi-Langmuir and Langmuir–Freundlich) and compared. The results indicate an heterogeneity of binding sites. It was found and proved by DFT calculations that the specific binding of vanillin in the cavities is due to non-covalent interactions of the template with the hydroxyphenyl- and the amide-moieties. The binding geometry of vanillin in the MIP cavity was also modelled. The obtained MIP is highly specific for vanillin (with an imprinting factor of 7.4) and was successfully applied to the extraction of vanillin from vanilla pods, red wine spike with vanillin, natural and artificial vanilla sugar with a recovery of 80%.  相似文献   

14.
Maltol, ethyl maltol, vanillin, and ethyl vanillin are important food additives as flavor enhancers. To quantify the four additives in milk powder, a novel 2D liquid chromatographic (2DLC) method was developed in this article. In such a 2DLC system, the target fractions eluted from the first dimensional column (C4) are stored onto the trapping column (C8) for subsequent analysis; after that, they were switched into the second dimensional column (C18) by a two‐position six‐port switching valve. A one‐step sample preparation method was used prior to 2DLC chromatographic analysis, which was easy and convenient. After optimization of all experimental parameters, the new method was validated in terms of linearity, LODs, and LOQs, intra‐ and interday precision, and accuracy. A conventional single‐dimensional liquid chromatographic method was also proposed in this work for comparison. In order to evaluate the applicability of the new 2DLC method, five brands of commercial milk powder samples (n = 8) were analyzed. Vanillin and ethyl vanillin were detected in two samples, respectively. It is showed that the 2DLC method is effective in quality control programs of milk powder products.  相似文献   

15.
In the present work, a novel method to extract three kinds of spices, namely vanillin, ethyl vanillin and ethyl maltol from food products such as biscuit, chocolate and milk powder was developed. 1-Octyl-3-methylimidazolium chloride([Omim]Cl) aqueous solution was selected as the extracting medium. A 0.5 g powder of food product was extracted by 5.0 mL of [Omim]Cl aqueous solution(0.3 mol/L, pH 6.0) under ultrasonication at 50 8C, and then the extract was centrifuged for 10 min at 4000 rpm. The extract was filtered through a syringe filter and injected into ion chromatography system for analysis. The separation of the three spices was carried out on an anion exchange column. The detection wavelength was set at 280 nm. Compared with traditional extraction solvents, [Omim]Cl aqueous solution displayed particular advantages. The applicability of the proposed method to real sample was confirmed. Under the optimal conditions, good reproducibility of extraction performance was obtained, with the relative standard deviation(RSD) values ranging from 1.9% to 6.3%. The recoveries of spiked samples were between 79.8% and 95.8%. The detection limits(LOD, S/N = 3) of vanillin, ethyl vanillin and ethyl maltol were in the range of 20–45 mg/kg. The use of ionic liquid aqueous solution as extraction solvent was operationally easy and environmental-friendly.  相似文献   

16.
刘通  王玉娇  王秀娟  崔东伟  张峰 《色谱》2019,37(11):1215-1220
建立了气相色谱-三重四极杆质谱(GC-MS/MS)同时检测巴氏杀菌乳中9种香精成分(二氢香豆素、香兰素、香豆素、乙基香兰素、甲基香兰素、7-甲基香豆素、7-甲氧基香豆素、7-乙氧基-4甲基香豆素和环香豆素)的分析方法。巴氏杀菌乳样品用乙醇溶液萃取,低温涡旋离心,取上清液过0.22 μm滤膜,以DB-5MS色谱柱分离,在MRM模式下测定,基质曲线外标法定量。实验结果表明,9种香精成分在1~200 μg/L范围内呈良好线性,线性相关系数(R2)均大于0.997,方法的检出限为0.002~0.1 μg/kg,定量限为0.001~2 μg/kg,平均回收率为90.3%~110.6%,日内、日间精密度均小于10%。该方法前处理简单快速,检测准确度和灵敏度高,可用于巴氏杀菌乳中9种香精成分的同时检测。  相似文献   

17.
《Electroanalysis》2018,30(5):969-974
A new chemically modified electrode based on titanium dioxide nanoparticles (TiO2‐NPs) has been developed. Aluminium was incorporated into the TiO2‐NPs to prepare aluminium doped TiO2 nanoparticles (Al‐TiO2‐NPs). Aluminium doped TiO2 nanoparticles‐modified screen printed carbon electrode (Al‐TiO2‐NPs/SPCE) was employed as easy, efficient and rapid sensor for electrochemical detection of vanillin in various types of food samples. Al‐TiO2‐NPs were characterized by energy‐dispersive X‐ray (EDX), transmission electron microscopy (TEM), and X‐ray diffraction (XRD) and analyses showing that the average particle sizes varied for the Al‐NPs (7.63 nm) and Al‐TiO2‐NPs (7.47 nm) with spherical crystal. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to optimize the analytical procedure. A detection limit of vanillin was 0.02 μM, and the relative standard deviation (RSD) was 3.50 %, obtained for a 5.0 μM concentration of vanillin. The electrochemical behaviour of several compounds, such as vanillic acid, vanillic alcohol, p‐hydroxybenzaldehyde and p‐hydroxybenzoic, etc., generally present in natural vanilla samples, were also studied to check the interferences with respect to vanillin voltammetric signal. The applicability was demonstrated by analysing food samples. The obtained results were compared with those provided by a previous method based on liquid chromatography for determination of vanillin.  相似文献   

18.
A heart‐cutting two‐dimensional high‐performance liquid chromatography method was developed to simultaneously quantify five major proteins and seven food additives (maltol, ethyl maltol, vanillin, ethyl vanillin, benzoic acid, sorbic acid, and saccharin sodium) in milk and milk powders. In this two‐dimensional system, a Venusil XBP‐C4 column was selected in the first dimension for protein separation, and a Hypersil ODS‐2 C18 column was employed in the second dimension for additive separation; a two‐position, six‐port switching valve was used to transfer the targets (additives) from the first dimension to the second dimension. Method validation consisted of selectivity, response function, linearity, precision, sensitivity, and recovery. In addition, a conventional one‐dimensional high‐performance liquid chromatography method was also tested for comparison. The two‐dimensional method resulted in significantly improved recovery of the food additives compared to the conventional method (90.6–105.4% and 65.5–86.5%, respectively). Furthermore, this novel method has a simple one‐step sample preparation procedure, which shortens the analysis time, resulting in more efficient analysis and less solvent usage.  相似文献   

19.
Vanilla (Vanilla planifolia) is a precious natural flavoring that is commonly used throughout the world. In the past, all vanilla used in Taiwan was imported; however, recent breakthroughs in cultivation and processing technology have allowed Taiwan to produce its own supply of vanilla. In this study, headspace solid-phase microextraction (HS-SPME) combined with GC-FID and GC-MS was used to analyze the volatile components of vanilla from different origins produced in Taiwan under different cultivation and processing conditions. The results of our study revealed that when comparing different harvest maturities, the composition diversity and total volatile content were both higher when the pods were matured for more than 38 weeks. When comparing different killing conditions, we observed that the highest vanillin percentage was present after vanilla pods were killed three times in 65 °C treatments for 1 min each. From the experiment examining the addition of different strains, the PCA results revealed that the volatiles of vanilla that was processed with Dekkera bruxellensis and Bacillus subtilis was clearly distinguished from which obtained by processing with the other strains. Vanilla processed with B. subtilis contained 2-ethyl-1-hexanol, and this was not detected in other vanillas. Finally, when comparing the vanillin percentage from seven different regions in Taiwan, vanilla percentage from Taitung and Taoyuan Longtan were the highest.  相似文献   

20.
A liquid chromatographic method with electrochemical detection is described for measuring plasma 3-methoxy-4-hydroxymandelic acid (VMA). Plasma is deproteinized by gel filtration and VMA is extracted into ethyl acetate, which is evaporated. VMA is oxidized to vanillin, which is purified by toluene extraction and quantified by high-performance liquid chromatography. The recovery of VMA through the entire procedure is 52 +/- 10% (mean +/- S.D., n = 19). The plasma VMA concentration in healthy young volunteers varies between 4.39 and 14.6 ng/ml, a range that is in excellent agreement with data obtained with mass fragmentography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号