首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The usefulness of the secondary line at 252.744 nm and the approach of side pixel registration were evaluated for the development of a method for sequential multi-element determination of Cu, Fe, Mn and Zn in soil extracts by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). The influence of side pixel registration on the sensitivity and linearity was investigated by measuring at wings (248.325, 248.323, 248.321, 248.329, and 248.332 nm) of the main line for Fe at 248.327 nm. For the secondary line at 252.744 nm or side pixel registration at 248.325 nm, main lines for Cu (324.754 nm), Mn (279.482 nm) and Zn (213.875 nm), sample flow-rate of 5.0 mL min−1 and calibration by matrix matching, analytical curves in the 0.2-1.0 mg L−1 Cu, 1.0-20.0 mg L−1 Fe, 0.2-2.0 mg L−1 Mn, 0.1-1.0 mg L−1 Zn ranges were obtained with linear correlations better than 0.998. The proposed method was applied to seven soil samples and two soil reference materials (IAC 277; IAC 280). Results were in agreement at a 95% confidence level (paired t-test) with reference values. Recoveries of analytes added to soil extracts containing 0.15 and 0.30 mg L−1 Cu, 7.0 and 14 mg L−1 Fe, 0.60 and 1.20 mg L−1 Mn, 0.07 and 0.15 mg L−1 Zn, varied within the 94-99, 92-98, 93-101, and 93-103% intervals, respectively. The relative standard deviations (n = 12) were 2.7% (Cu), 1.4% (Fe - 252.744 nm), 5.7% (Fe - 248.325 nm), 3.2% (Mn) and 2.8% (Zn) for an extract containing 0.35 mg L−1 Cu, 14 mg L−1 Fe, 1.1 mg L−1 Mn and 0.12 mg L−1 Zn. Detection limits were 5.4 μg L−1 Cu, 55 μg L−1 Fe (252.744 nm), 147 μg L−1 Fe (248.325 nm), 3.0 μg L−1 Mn and 4.2 μg L−1 Zn.  相似文献   

2.
In this work several pre-treatment methods were studied for metal (Na, K, Mg, Cu and Ca) determination in Orujo spirit samples using inductively coupled plasma atomic emission spectrometry (ICP-AES). Dilution, digestion, evaporation, and cryogenic desolvatation techniques were comparatively evaluated. Because of their analytical characteristics, digestion and evaporation with nitrogen current were found to be appropriate procedures for the determination of metals in alcoholic spirit samples. Yet, if simplicity and application time are to be considered, the latter—evaporation in a water bath with a nitrogen current—stands out as the optimum procedure for any further determinations in Orujo samples by ICP-AES. Low detection levels and wide linear ranges (sufficient to determine these metals in the samples studied) were achieved for each metal. The recoveries (in the 97.5-100.5% range) and the precision (R.S.D. lower than 5.6%) obtained were also satisfactory. The selected procedure was applied to determine the content of metals in 80 representative Galician Orujo spirit samples with and without a Certified Brand of Origin (CBO) which had been produced using different distillation systems. The metal concentrations ranged between 0.37 and 79.7 mg L−1 for Na, <LOD to 12.4 mg L−1 for K, 0.02-4.83 mg L−1 for Mg content, <LOD to 37.3 mg L−1 for Cu and 0.03-13.10 mg L−1 for Ca.  相似文献   

3.
4.
A suitable non-enzymatic method is presented as an alternative to the lactic acid determination in yogurt and fermented mash samples. The oxidative conversion of lactic acid by Ce4+ to CO2 was performed in a sequential injection system with a heating coil set at 45 °C. A gas diffusion unit was coupled to the flow system for promoting the permeation of CO2, which was collected into a bromothymol blue solution (pH 8.4), used as indicator solution for the spectrophotometric determination (619 nm). Simplicity in operation, low reagent consumption, low cost and ruggedness are some remarkable characteristics of the proposed system. Base line drift was < 0.005 h− 1. A linear range from 20.0 to 100.0 mg L− 1 lactic acid was obtained (r2 = 0.998), and the detection and quantification limits were estimated as 0.158 mg L− 1 and 1.6 mg L− 1, respectively. The sampling rate was 22 h− 1, with a consumption of 0.04 g Ce4+ per determination. Interferences of matrix components were not detected. Samples of yogurt and sugar cane fermented mash products were analyzed, and no significant difference at 95% confidence level was observed when comparing the proposed method with HPLC analysis.  相似文献   

5.
A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L−1, 1.0 mg L−1, 1.3 mg L−1 and 0.2 mg L−1 were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments.  相似文献   

6.
Melchert WR  Rocha FR 《Talanta》2005,65(2):461-465
Nitrate determination in waters is generally carried out with cadmium filings and carcinogenic reagents or by reaction with phenolic compounds in highly concentrated sulfuric acid medium. In this work, it was developed a green analytical procedure for nitrate determination in natural waters based on direct spectrophotometric measurements in ultraviolet, using a flow-injection system with an anion-exchange column for separation of nitrate from interfering species. The proposed method employs only one reagent (HClO4) in a minimum amount (equivalent to 18 μL concentrated acid per determination), and allowed nitrate determination within 0.50-25.0 mg L−1, without interference of up to 200.0 mg L−1 humic acid; 1.0 mg L−1 NO2; 200.0 mg L−1 PO43−; 75.0 mg L−1 Cl; 50.0 mg L−1 SO42− and 15.0 mg L−1 Fe3+. The detection limit (99.7% confidence level) and the coefficient of variation (n = 20) were estimated as 0.1 mg L−1 and 0.7%, respectively. The results obtained for natural water samples were in agreement with those achieved by the reference method based on nitrate reduction with copperized cadmium at the 95% confidence level.  相似文献   

7.
A vapor generation procedure to determine Cd by atomic fluorescence spectrometry (AFS) has been established. Volatile species of Cd are generated by following reaction of acidified sample containing Fe(II) and l-cysteine (Cys) with sodium tetrahydroborate (NaBH4). The presence of 5 mg L−1 Fe(II) and 0.05% m/v Cys improves the efficiency of Cd vapor generation substantially about four-fold compared with conventional thiourea and Co(II) system. Three experiments with different mixing sequences and reaction times are designed to study the reaction mechanism. The results document that the stability of Cd(II)–Cys complexes is better than Cys–THB complexes (THB means NaBH4) while the Cys–THB complexes have more contribution to improve the Cd vapor generation efficiency than Cd(II)–Cys complexes. Meanwhile, the adding of Fe(II) can catalyze the Cd vapor generation. Under the optimized conditions, the detection limit of Cd is 0.012 μg L−1; relative standard deviations vary between 0.8% and 5.5% for replicate measurements of the standard solution. In the presence of 0.01% DDTC, Cu(II), Pb(II) and Zn(II) have no significant influence up to 5 mg L−1, 10 mg L−1and 10 mg L−1, respectively. The accuracy of the method is verified through analysis of the certificated reference materials and the proposed method has been applied in the determination of Cd in seafood and rice samples.  相似文献   

8.
In this paper, we proposed a procedure for the determination of iron(II) and total iron in wine samples employing molecular absorption spectrophotometry. The ligand used is 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (Br-PADAP) and the chromogenic reaction in absence or presence of ascorbic acid (reducing agent) allows the determination of iron(II) or total iron, respectively. The optimization step was performed using a multivariate technique (Box Behnken design) involving the factors pH, acid ascorbic concentration and reaction time.The method allows the determination of iron(II) and iron(III) in wine samples, with limits of detection and quantification 0.22 and 0.72 μg L−1, respectively. The precision expressed as relative standard deviation (R.S.D.) was 1.43 and 0.56% (both, n = 11) for content of iron(II) in wine samples of 1.68 and 4.65 mg L−1, and 1.66 and 0.87% (both, n = 11) for content of total iron in wine samples of 1.72 and 5.48 mg L−1.This method was applied for determination of iron(II) and total iron in six different wine samples. In these, the iron(II) content varied from 0.76 to 4.65 mg L−1 and from 1.01 to 5.48 mg L−1 for total iron. The results obtained in the determination of total iron by Br-PADAP method were compared with those that were performed after complete acid digestion in open system and determination of total iron employing FAAS. The method of regression linear was used for comparison of these results and demonstrated that there is no significant difference between the results obtained with these two procedures.  相似文献   

9.
A novel strategy for implementing the automatic standard addition method (SAM) is described. By using a flow-batch system that presents the intrinsic favourable characteristics of the flow and batch techniques, the proposed strategy performs fast standard additions with sufficient flexibility and versatility and employs only one standard solution per analyte. To calculate the analyte concentration, a mathematical model based on a classical SAM and flow variables of the system was developed. The proposed flow-batch SAM was applied to copper determination by flame atomic absorption spectrometry (AAS) in sugar cane-made alcoholic beverages, known as “Cachaça”, available in Brazil. A SAM has been recommended for these analyses because “Cachaças” presents a significantly different composition causing matrix effects and copper determination by calibration using matrix-matching standards can yield inaccurate results. The results show good agreement between the obtained values with the proposed flow-batch SAM and a manual SAM. The mean relative errors and overall standard deviations were always <1.0% (n=6) and 0.2 mg l−1, respectively, for 1.0-7.0 mg l−1 Cu. By using five standard addition levels, the sample throughput was 70 h−1 and the consumption of sample and standard solution were 1.5 and 0.5 ml per analysis, respectively.  相似文献   

10.
Vapor generation-inductively coupled plasma-optical emission spectrometry was used for the determination of sulfide in water samples preserved by the addition of a zinc acetate and sodium hydroxide solution. Hydrogen sulfide and acid-volatile sulfides were transformed, by acidification, to a gaseous phase in a vapor generator and subsequently detected by inductively coupled plasma optical emission spectrometry. Compounds interfering with iodometric titration and spectrophotometric determination were examined as potential chemical interferents. The proposed method provides results comparable to iodometric titration in the tested concentration range 0.06-22.0 mg L−1. Limit of detection for the determination of hydrogen sulfide by this method is 0.03 mg L−1.  相似文献   

11.
A flow injection (FI) method with flame atomic absorption spectrometry (FAAS) detection was developed for the determination and speciation of nitrite and nitrate in foodstuffs and wastewaters. The method is based on the oxidation of nitrite to nitrate using a manganese(IV) dioxide oxidant microcolumn where the flow of the sample through the microcolumn reduces the MnO2 solid phase reagent to Mn(II), which is measured by FAAS. The absorbance of Mn(II) are proportional to the concentration of nitrite in the samples. The injected sample volume was 400 μL with a sampling rate of analyses was 90 h−1 with a relative standard deviation better than 1.0% in a repeatability study. Nitrate is reduced to nitrite in proposed FI-FAAS system using a copperized cadmium microcolumn and analyzed as nitrite. The calibration curves were linear up to 20 mg L−1 and 30 mg L−1 with a detection limit of 0.07 mg L−1 and 0.14 mg L−1 for nitrite and nitrate, respectively. The results exhibit no interference from the presence of large amounts of ions. The method was successfully applied to the speciation of nitrite and nitrate in spiked natural water, wastewater and foodstuff samples. The precision and accuracy of the proposed method were comparable to those of the reference spectrophotometric method.  相似文献   

12.
A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammetric cell was developed. A low-cost small scale voltammetric cell was fabricated from disposable pipet tip and microcentrifuge tube with volume of about 3 mL for conveniently incorporated with the SI system. A home-made UV digestion unit was fabricated employing a small size and low wattage UV lamps and flow reactor made from PTFE tubing coiled around the UV lamp. An in-line single standard calibration or a standard addition procedure was developed employing a monosegmented flow technique. Performance of the proposed system was tested for in-line digestion of model water samples containing metal ions and some organic ligands such as strong organic ligand (EDTA) or intermediate organic ligand (humic acid). The wet acid digestion method (USEPA 3010a) was used as a standard digestion method for comparison. Under the optimum conditions, with deposition time of 180 s, linear calibration graphs in range of 10-300 μg L−1 Zn(II), 5-200 μg L−1 Cd(II), 10-200 μg L−1 Pb(II), 20-400 μg L−1 Cu(II) were obtained with detection limit of 3.6, 0.1, 0.7 and 4.3 μg L−1, respectively. Relative standard deviation were 4.2, 2.6, 3.1 and 4.7% for seven replicate analyses of 27 μg L−1 Zn(II), 13 μg L−1 Cd(II), 13 μg L−1 Pb(II) and 27 μg L−1 Cu(II), respectively. The system was validated by certified reference material of trace metals in natural water (SRM 1640 NIST). The developed system was successfully applied for speciation of Cd(II) Pb(II) and Cu(II) in ground water samples collected from nearby zinc mining area.  相似文献   

13.
The presence of trace neutral organonitrogen compounds as carbazole and indole in derivative petroleum fuels plays an important role in the car's engine maintenance. In addition, these substances contribute to the environmental contamination and their control is necessary because most of them are potentially carcinogenic and mutagenic. For those reasons, a reliable and sensitive method was proposed for the determination of neutral nitrogen compounds in fuel samples, such as gasoline and diesel using preconcentration with modified silica gel (Merck 70-230 mesh ASTM) followed by differential pulse voltammetry (DPV) technique on a glassy carbon electrode. The electrochemical behavior of carbazole and indole studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF4 0.1 mol L−1) for indole (−2.27 V) and carbazole (−2.67 V) versus Ag|AgCl|KClsat reference electrode. The proposed DPV method showed a good linear response range from 0.10 to 300 mg L−1 and a limit of detection (L.O.D) of 7.48 and 2.66 μg L−1 for indole and carbazole, respectively. The results showed that simultaneous determination of indole and carbazole presents in spiked gasoline samples were 15.8 ± 0.3 and 64.6 ± 0.9 mg L−1 and in spiked diesel samples were 9.29 ± 1 and 142 ± 1 mg L−1, respectively. The recovery was evaluated and the results shown the values of 88.9 ± 0.4 and 90.2 ± 0.8% for carbazole and indole in fuel determinations. The proposed method was also compared with UV-vis spectrophotometric measures and the results obtained for the two methods were in good agreement according to the F and t Student's tests.  相似文献   

14.
An analytical procedure with improved sensitivity was developed for cyanide determination in natural waters, exploiting the reaction with the complex of Cu(I) with 2,2′-biquinoline 4,4′-dicarboxylic acid (BCA). The flow system was based on the multi-pumping approach and long pathlength spectrophotometry with a flow cell based on a Teflon AF 2400® liquid core waveguide was exploited to increase sensitivity. A linear response was achieved from 5 to 200 μg L−1, with coefficient of variation of 1.5% (n = 10). The detection limit and the sampling rate were 2 μg L−1 (99.7% confidence level), and 22 h−1, respectively. Per determination, 48 ng of Cu(II), 5 μg of ascorbic acid and 0.9 μg of BCA were consumed. As high as 100 mg L−1 thiocyanate, nitrite or sulfite did not affect cyanide determination. Sulfide did not interfere at concentrations lower than 40 and 200 μg L−1 before or after sample pretreatment with hydrogen peroxide. The results for natural waters samples agreed with those obtained by a fluorimetric flow-based procedure at the 95% confidence level. The proposed procedure is then a reliable, fast and environmentally friendly alternative for cyanide determination in natural waters.  相似文献   

15.
Hydrogen peroxide and nicotinamide adenine dinucleotide (NADH) may be determined amperometrically using screen-printed electrodes chemically modified with iron(III) hexacyanoosmate(II) (Osmium purple) in flow injection analysis (FIA). The determination is based on the exploitation of catalytic currents resulting from the oxidation/reduction of the modifier. The performance of the sensor was characterized and optimized by controlling several operational parameters (applied potential, pH and flow rate of the phosphate buffer). Comparison has been made with analogous complexes of ruthenium (Ruthenium purple) and iron (Prussian blue). Taking into account the sensitivity and stability of corresponding sensors, the best results were obtained with the use of Osmium purple. The sensor exhibited a linear increase of the amperometric signal with the concentration of hydrogen peroxide in the range of 0.1-100 mg L−1 with a detection limit (evaluated as 3σ) of 0.024 mg L−1 with a R.S.D. 1.5% for 10 mg L−1 H2O2 under optimized flow rate of 0.4 mL min−1 in 0.1 M phosphate buffer carrier (pH 6) and a working potential of +0.15 V versus Ag/AgCl. Afterwards, a biological recognition element - either glucose oxidase or ethanol dehydrogenase - was incorporated to achieve a sensor facilitating the determination of glucose or ethanol, respectively. The glucose sensor gave linearity between current and concentration in the range from 1 to 250 mg L−1 with a R.S.D. 2.4% for 100 mg L−1 glucose, detection limit 0.02 mg L−1 (3σ) and retained its original activity after 3 weeks when stored at 6 °C. Optimal parameters in the determination of ethanol were selected as: applied potential +0.45 V versus Ag/AgCl, flow rate 0.2 mL min−1 in 0.1 M phosphate buffer carrier (pH 7). Different structural designs of the ethanol sensor were tested and linearity obtained was up to 1000 mg L−1 with a maximum R.S.D. of 5.1%. Applications in food analysis were also examined.  相似文献   

16.
Silva SG  Rocha FR 《Talanta》2010,83(2):559-564
A flow system designed with solenoid micro-pumps is proposed for fast and greener spectrophotometric determination of free glycerol in biodiesel. Glycerol was extracted from samples without using organic solvents. The determination involves glycerol oxidation by periodate, yielding formaldehyde followed by formation of the colored (3,5-diacetil-1,4-dihidrolutidine) product upon reaction with acetylacetone. The coefficient of variation, sampling rate and detection limit were estimated as 1.5% (20.0 mg L−1 glycerol, n = 10), 34 h−1, and 1.0 mg L−1 (99.7% confidence level), respectively. A linear response was observed from 5 to 50 mg L−1, with reagent consumption estimated as 345 μg of KIO4 and 15 mg of acetylacetone per determination. The procedure was successfully applied to the analysis of biodiesel samples and the results agreed with the batch reference method at the 95% confidence level.  相似文献   

17.
A simple, automatic and practical system for successive determination of albumin and creatinine has been developed by combining sequential injection analysis (SIA) and highly sensitive dye-binding assays. Albumin detection was based on the increase in the absorbance due to complex formation between albumin and eosin Y in acidic media. The absorbance of the complex was monitored at 547 nm. For the creatinine assay, the concentration of creatinine was measured by reaction with alkaline picrate to form a colored product which absorbs at 500 nm. The influences of experimental variables such as effects of pH, reagent concentration, standard/sample volume and interferences were investigated. Under optimal conditions, the automated method showed linearity up to 20 mg L−1 for albumin and 100 mg L−1 for creatinine. The 3σ detection limits were 0.6 and 3.5 mg L−1 for albumin and creatinine, respectively, and the relative standard deviations (n = 10) were 2.49% for 20 mg L−1 albumin, and 3.14% for 20 mg L−1 creatinine. Application of the proposed method to the direct analysis of urinary samples yielded results which agreed with those obtained from the Bradford protein assay and a creatinine enzymatic assay according to a paired t-test. The results obtained should be a step towards developing a fully automated and reliable analytical system for clinical research, which requires direct determination of albumin and creatinine and/or its ratios.  相似文献   

18.
The construction and evaluation of a Low Temperature Co-fired Ceramics (LTCC)-based continuous flow potentiometric microanalyzer prototype to simultaneously monitor the presence of two ions (potassium and nitrate) in samples from the water recycling process for future manned space missions is presented. The microsystem integrates microfluidics and the detection system in a single substrate and it is smaller than a credit card. The detection system is based on two ion-selective electrodes (ISEs), which are built using all-solid state nitrate and potassium polymeric membranes, and a screen-printed Ag/AgCl reference electrode. The obtained analytical features after the optimization of the microfluidic design and hydrodynamics are a linear range from 10 to 1000 mg L−1 and from 1.9 to 155 mg L−1 and a detection limit of 9.56 mg L−1 and 0.81 mg L−1 for nitrate and potassium ions respectively.  相似文献   

19.
Bismuth and Sb were evaluated as internal standards (IS) to minimize matrix effects on the direct and simultaneous determination of As, Cu, and Pb in cachaça by graphite furnace atomic absorption spectrometry using W-coated platform plus Pd-Mg(NO3)2 as modifier. For 20 μL injected sample, calibration within the 0.5-10 μg L−1 As, 100-1000 μg L−1 Cu and 0.5-30 μg L−1 Pb intervals were established using the ratios As absorbance to Sb absorbance, Cu absorbance to Bi absorbance and Pb absorbance to Bi absorbance versus analytes concentration, respectively. Typical linear correlations of 0.998, 0.999 and 0.999 were, respectively, obtained. The proposed method was applied for direct determination of As, Cu and Pb in 10 commercial cachaça samples and results were in agreement with those obtained by inductively coupled plasma mass spectrometry at 95% confidence level. The found characteristic masses were 30 pg As, 274 pg Cu and 39 pg Pb. The useful lifetime of the graphite tube was around 760 firings. Recoveries of As, Cu and Pb added to cachaça samples varied, respectively, from 98% to 109%, 97% to 108% and 98% to 104% with internal standards and from 48% to 54%, 53% to 92% and 62% to 97% without internal standards. The limits of detection were 0.13 μg L−1 As, 22 μg L−1 Cu and 0.05 μg L−1 Pb. The relative standard deviations (n = 12) for a spiked sample containing 20 μg L−1 As, Pb and 500 μg L−1 Cu were 1.6%, 1.0%, and 1.8% with IS and 4.3%, 5.2%, and 5.5% without IS.  相似文献   

20.
A highly selective and simple flow injection method is reported for the determination of Au(III) in jewel samples. The method is based on the catalytic effect of Au(III) on the oxidation of 4-amino-4′-methoxydiphenylamine hydrochloride (Variamine Blue B base, VB) by KIO3. The colored reaction product was monitored spectrophotometrically at 546 nm. A volume fraction of 40% N,N-dimethylformamide (DMF) greatly enhances the selectivity of the method. The chemical (pH and concentrations of reagents) and instrumental variables (sample injection volume, reagents flow rates, reaction coil length) affecting the determination were studied and optimized. Under the selected values, the analyte could be determined in the range of 0.1-12.0 mg L−1 (r = 0.9997), at a sampling rate of 120 h−1. The proposed assay was precise (sr = 0.8% at 5.0 mg L−1 Au(III), n = 12) and adequately sensitive with a 3σ limit of detection of 0.03 mg L−1. The method was successfully applied to the analysis of jewel samples. The obtained results were favorably compared to flame atomic absorption spectrometry (FAAS) used as a reference method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号