首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid, simple miniaturised photometrical method was developed for the determination of nitrate and/or nitrite in freshwater samples. All procedures, including sample buffering, reduction by copperised cadmium granules, colour development and absorbance determination, were completed in a 96-well microplate. The factors governing the nitrate reduction and its recovery were investigated in detail, and the optimised analysing conditions were established. Nitrate was quantitatively reduced by copperised cadmium granules with a high reduction efficiency (96.59 ± 0.96%). The proposed method gave a linear calibration ranging from 0.01 to 1.50 mg L−1 for NO2-N and 0.02 to 1.50 mg L−1 for NO3-N. The detection limits for nitrite and nitrate were 2 and 4 μg L−1, respectively. The proposed method allowed at least 48 samples to be simultaneously analysed in duplicate, with good precision, within 90 min for nitrate and 30 min for nitrite, and was successfully applied to actual freshwater sample analysis with a recovery of 98.02 ± 1.04% for nitrite and 99.72 ± 1.39% for nitrate. This method produced accurate results comparable to standard methods, provided a much higher sample throughput than conventional methods and could be routinely used in actual freshwater sample monitoring.  相似文献   

2.
A sensitive reagent-injection flow analysis method for the spectrophotometric determination of nitrate in marine, estuarine and fresh water samples is described. The method is based on the reduction of nitrate in a micro column containing zinc granules at pH 6.5. The nitrite formed is reacted with sulfanilamide and N-(1-naphthyl)ethylene diamine (Griess reagent), and the resulting azo compound is quantified spectrophotometrically at 520 nm. Water samples in the range of 3-700 μg L−1 NO3-N can be processed with a throughput of up to 40 samples per hour, a detection limit of 1.3 μg L−1 and reproducibility of 1.2% RSD (50 μg L−1 NO3-N, n = 10). The proposed method was successfully applied for the determination of nitrate in estuarine waters and the reliability was assessed by the analyses of certified reference materials and recovery experiments. The method is suitable for waters with a wide range of salinities, and was successfully used for more than 3200 underway nitrate measurements aboard SV Pelican1 in the “Two Bays” cruise in January 2010.  相似文献   

3.
Biswas S  Chowdhury B  Ray BC 《Talanta》2004,64(2):308-312
A highly sensitive and virtually specific method has been developed for the trace and ultra trace 5 ng ml−1-1 μg ml−1 fluorimetric analysis of nitrite. The method is based on the quenching action of nitrite on the native fluorescence of murexide (ammonium purpurate) [λex=349.0 nm, λem=444.5 nm] in the acid range of 0.045-0.315 (M) H2SO4. The method is very precise and accurate (S.D.=±0.4877 and R.S.D.=0.4878% for the determination of 0.1 μg ml−1 of nitrite in 11 replicates). Relatively large excesses of over 35 cations and anions do not interfere. The proposed technique has been successfully applied for the determination of nitrite and nitrate in ground water, surface water and sea water, nitrite in soil and nitrate in forensic samples. The method has also been extended for the analysis of NOx in air.  相似文献   

4.
A flow injection (FI) method with flame atomic absorption spectrometry (FAAS) detection was developed for the determination and speciation of nitrite and nitrate in foodstuffs and wastewaters. The method is based on the oxidation of nitrite to nitrate using a manganese(IV) dioxide oxidant microcolumn where the flow of the sample through the microcolumn reduces the MnO2 solid phase reagent to Mn(II), which is measured by FAAS. The absorbance of Mn(II) are proportional to the concentration of nitrite in the samples. The injected sample volume was 400 μL with a sampling rate of analyses was 90 h−1 with a relative standard deviation better than 1.0% in a repeatability study. Nitrate is reduced to nitrite in proposed FI-FAAS system using a copperized cadmium microcolumn and analyzed as nitrite. The calibration curves were linear up to 20 mg L−1 and 30 mg L−1 with a detection limit of 0.07 mg L−1 and 0.14 mg L−1 for nitrite and nitrate, respectively. The results exhibit no interference from the presence of large amounts of ions. The method was successfully applied to the speciation of nitrite and nitrate in spiked natural water, wastewater and foodstuff samples. The precision and accuracy of the proposed method were comparable to those of the reference spectrophotometric method.  相似文献   

5.
Filik H  Giray D  Ceylan B  Apak R 《Talanta》2011,85(4):1818-1824
A novel fiber optic spectrophotometric method for nitrite determination in different samples is suggested, based on the reaction of nitrite with Safranin O in acidic medium to form a diazo-safranin, which is subsequently coupled with pyrogallol in alkaline medium to form a highly stable, red azo dye, followed by cloud point extraction (CPE) using a mixed micelle of a nonionic surfactant, Triton X-114, with an anionic surfactant, sodium dodecyl sulphate (SDS). The reaction and extraction conditions (e.g., acidity for diazotization and alkalinity for pyrogallol coupling, and other reagent concentrations, time, and tolerance to other ions) were optimized. Linearity was obeyed in a concentration range up to 230 μg L−1, and the detection limit of the method is 0.5 μg L−1 of nitrite ion. The molar absorptivity for nitrite of the Safranin-diazonium salt (?610 nm = 4 × 103 L mol−1 cm−1) existing in literature was greatly enhanced by pyrogallol coupling and CPE enrichment (?592 nm = 1.39 × 105 L mol−1 cm−1). The method was applied to the determination of nitrite in tap water, lake water and milk samples with an optimal preconcentration factor of 20.  相似文献   

6.
Two new, simple and accurate methods for the determination of sulfide (S2−) at low levels (μg L−1) in aqueous samples were developed. The generation of hydrogen sulfide (H2S) took place in a coil where sulfide reacted with hydrochloric acid. The resulting H2S was then introduced as a vapor into an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and sulfur emission intensity was measured at 180.669 nm. In comparison to when aqueous sulfide was introduced, the introduction of sulfur as H2S enhanced the sulfur signal emission. By setting a gas separator at the end of the reaction coil, reduced sulfur species in the form of H2S were removed from the water matrix, thus, interferences could be avoided. Alternatively, the gas separator was replaced by a nebulizer/spray chamber combination to introduce the sample matrix and reagents into the plasma. This methodology allowed the determination of both sulfide and sulfate in aqueous samples. For both methods the linear response was found to range from 5 μg L−1 to 25 mg L−1 of sulfide. Detection limits of 5 μg L−1 and 6 μg L−1 were obtained with and without the gas separator, respectively. These new methods were evaluated by comparison to the standard potentiometric method and were successfully applied to the analysis of reduced sulfur species in environmental waters.  相似文献   

7.
Microwave energy has been novelty applied to speed up a tetramethylammonium hydroxide (TMAH) alkaline digestion of seaweed samples and to assist distillation of iodine from seaweed alkaline digests. Iodide in the alkaline digests from seaweed and distilled iodine, reduced back to iodine in a hydroxylamine hydrochloride solution, was determined by a catalytic spectrophotometric method based on the catalytic effect of iodide on the oxidation of As(III) by Ce(IV) in H2SO4/HCl medium (Sandell-Kolthoff reaction). The determination of iodide was directly performed in the alkaline digests, while total iodine was assessed by analyzing the hydroxylamine hydrochloride solution after the distillation process. Microwave-assisted alkaline digestion was performed using 7.5 mL of TMAH and irradiating samples at 670 W for two 5.5 min steps. Microwave-assisted distillation was carried out using 4.0 mL of the alkaline digest and 3 mL of a 2.2 M hydrochloric acid and 0.05% (m/v) sodium nitrite solution, with a microwave power at 670 W for two 90 s steps. The distillate (iodine vapor) was bubbled in 10 mL of a 500 μg mL−1 hydroxylamine hydrochloride solution (accepting solution). The linear calibration ranges were 0.30-20.0 and 0.40-20.0 μg L−1 for iodide determination and total iodine determination, respectively. The limit of detection was 9.2 μg g−1 for iodide and 28.5 μg g−1 for total iodine. Repeatability of the overall procedures, expressed as R.S.D. for 11 determinations, was 2.6% for 196.3 μg g−1 of iodide measured after microwave-assisted alkaline digestion, and 5.8% for 954.3 μg g−1 of total iodine by microwave-assisted alkaline digestion followed by microwave-assisted distillation. Finally, accuracy of the methods was assessed by analyzing the NIST-09 (Sargasso) certified reference material and the methods were applied to the determination of iodide and total iodine in different Atlantic edible seaweed samples with satisfactory results.  相似文献   

8.
Phthalates (PAEs) are ubiquitous toxic chemical compounds. During the last few years, some phthalate metabolites (MPAEs) have been proposed as appropriate biomarkers in human urine samples to determine PAE human intake and exposure. So, it is necessary to have fast, easy, robust and validated analytical methods to determine selected MPAEs in urine human samples. Two different instrumental methods based on gas (GC) and ultra-high performance liquid (UHPLC) chromatography coupled to mass spectrometry (MS) have been optimized, characterized and validated for the simultaneous determination of nine primary and secondary phthalate metabolites in urine samples. Both instrumental methods have similar sensitivity (detection limits ranged from 0.03 to 8.89 pg μL−1 and from 0.06 to 0.49 pg μL−1 in GC–MS and UHPLC–MS2, respectively), precision (repeatability, expressed as relative standard deviation, which was lower than 8.4% in both systems, except for 5OH-MEHP in the case of GC–MS) and accuracy. But some advantages of the UHPLC–MS2 method, such as more selectivity and lower time in the chromatographic runs (6.8 min vs. 28.5 min), have caused the UHPLC–MS2 method to be chosen to analyze the twenty one human urine samples from the general Spanish population. Regarding these samples, MEP showed the highest median concentration (68.6 μg L−1), followed by MiBP (23.3 μg L−1), 5cx-MEPP (22.5 μg L−1) and MBP (19.3 μg L−1). MMP (6.99 μg L−1), 5oxo-MEHP (6.15 μg L−1), 5OH-MEHP (5.30 μg L−1) and MEHP (4.40 μg L−1) showed intermediate levels. Finally, the lowest levels were found for MBzP (2.55 μg L−1). These data are within the same order of magnitude as those found in other similar populations.  相似文献   

9.
Bismuth and Sb were evaluated as internal standards (IS) to minimize matrix effects on the direct and simultaneous determination of As, Cu, and Pb in cachaça by graphite furnace atomic absorption spectrometry using W-coated platform plus Pd-Mg(NO3)2 as modifier. For 20 μL injected sample, calibration within the 0.5-10 μg L−1 As, 100-1000 μg L−1 Cu and 0.5-30 μg L−1 Pb intervals were established using the ratios As absorbance to Sb absorbance, Cu absorbance to Bi absorbance and Pb absorbance to Bi absorbance versus analytes concentration, respectively. Typical linear correlations of 0.998, 0.999 and 0.999 were, respectively, obtained. The proposed method was applied for direct determination of As, Cu and Pb in 10 commercial cachaça samples and results were in agreement with those obtained by inductively coupled plasma mass spectrometry at 95% confidence level. The found characteristic masses were 30 pg As, 274 pg Cu and 39 pg Pb. The useful lifetime of the graphite tube was around 760 firings. Recoveries of As, Cu and Pb added to cachaça samples varied, respectively, from 98% to 109%, 97% to 108% and 98% to 104% with internal standards and from 48% to 54%, 53% to 92% and 62% to 97% without internal standards. The limits of detection were 0.13 μg L−1 As, 22 μg L−1 Cu and 0.05 μg L−1 Pb. The relative standard deviations (n = 12) for a spiked sample containing 20 μg L−1 As, Pb and 500 μg L−1 Cu were 1.6%, 1.0%, and 1.8% with IS and 4.3%, 5.2%, and 5.5% without IS.  相似文献   

10.
Competitive electrochemical enzyme-linked immunosorbent assays based on disposable screen-printed electrodes have been developed for quantitative determination of ochratoxin A (OTA). The assays were carried out using monoclonal antibodies in the direct and indirect format. OTA working range, I50 and detection limits were 0.05-2.5 and 0.1-7.5 μg L−1, 0.35 (±0.04) μg L−1 and 0.9 (±0.1) μg L−1, 60 and 100 μg L−1 in the direct and indirect assay format, respectively. The immunosensor in the direct format was selected for the determination of OTA in wheat. Samples were extracted with aqueous acetonitrile and the extract analyzed directly by the assay without clean-up. The I50 in real samples was 0.2 μg L−1 corresponding to 1.6 μg/kg in the wheat sample with a detection limit of 0.4 μg/kg (calculated as blank signal −3σ). Within- and between-assay variability were less than 5 and 10%, respectively. A good correlation (r = 0.9992) was found by comparative analysis of naturally contaminated wheat samples using this assay and an HPLC/immunoaffinity clean-up method based on the AOAC Official Method 2000.03 for the determination of OTA in barley.  相似文献   

11.
Baytak S  Zereen F  Arslan Z 《Talanta》2011,84(2):319-323
A trace element preconcentration procedure is described utilizing a minicolumn of yeast (Yamadazyma spartinae) immobilized TiO2 nanoparticles for determination of Cr, Cu, Fe, Mn, Ni and Zn from water samples by inductively coupled plasma atomic emission spectrometry. The elements were quantitatively retained on the column between pH 6 and 8. Elution was made with 5% (v/v) HNO3 solution. Recoveries ranged from 98 ± 2 (Cr) to 100 ± 4 (Zn) for preconcentration of 50 mL multielement solution (50 μg L−1). The column made up of 100 mg sorbent (yeast immobilized TiO2 NP) offers a capacity to preconcentrate up to 500 mL of sample solution to achieve an enrichment factor of 250 with 2 mL of 5% (v/v) HNO3 eluent. The detection limits obtained from preconcentration of 50 mL blank solutions (5%, v/v, HNO3, n = 11) were 0.17, 0.45, 0.25, 0.15, 0.33 and 0.10 μg L−1 for Cr, Cu, Fe, Mn, Ni and Zn, respectively. Relative standard deviation (RSD) for five replicate analyses was better than 5%. The retention of the elements was not affected from up to 500 μg L−1 Na+ and K+ (as chlorides), 100 μg L−1 Ca2+ (as nitrate) and 50 μg L−1 Mg2+ (as sulfate). The method was validated by analysis of freshwater standard reference material (SRM 1643e) and applied to the determination of the elements from tap water and lake water samples.  相似文献   

12.
In this work, it was developed a method for the determination of nitrite and nitrate in groundwater by high-resolution continuum source electrothermal molecular absorption spectrometry of NO produced by thermal decomposition of nitrate in a graphite furnace. The NO line at 215.360 nm was used for all analytical measurements and the signal obtained by integrated absorbance of three pixels. A volume of 20 μL of standard solution or groundwater sample was injected into graphite furnace and 5 μL of a 1% (m/v) Ca solution was co-injected as chemical modifier. The pyrolisis and vaporization temperatures established were of 150 and 1300 °C, respectively. Under these conditions, it was observed a difference of thermal stability among the two nitrogen species in the presence of hydrochloric acid co-injected. While that the nitrite signal was totally suppressed, nitrate signal remained nearly stable. This way, nitrogen can be quantified only as nitrate. The addition of hydrogen peroxide provided the oxidation of nitrite to nitrate, which allowed the total quantification of the species and nitrite obtained by difference. A volume of 5 μL of 0.3% (v/v) hydrochloric acid was co-injected for the elimination of nitrite, whereas that hydrogen peroxide in the concentration of 0.75% (v/v) was added to samples or standards for the oxidation of nitrite to nitrate. Analytical curve was established using standard solution of nitrate. The method described has limits of detection and quantification of 0.10 and 0.33 μg mL−1 of nitrogen, respectively. The precision, estimated as relative standard deviation (RSD), was of 7.5 and 3.8% (n = 10) for groundwater samples containing nitrate–N concentrations of 1.9 and 15.2 μg mL−1, respectively. The proposed method was applied to the analysis of 10 groundwater samples and the results were compared with those obtained by ion chromatography method. In all samples analyzed, the concentration of nitrite–N was always below of the limit of quantification of both the methods. The concentrations of nitrate–N varied from 0.58 to 15.5 μg mL−1. No significant difference it was observed between the results obtained by both methods for nitrate–N, at the 95% confidence level.  相似文献   

13.
A multi-reversed flow system software-assisted was developed for improvement of sensitivity in flow analysis. The performance of the flow system proposed was evaluated by using as a model the conventional Griess’ colorimetric reaction for determination of nitrite in waters. The manifold incorporated three 3-way solenoid valves, a relay box solenoid actuated, a peristaltic pump, and a photometric detector. A tailored software was designed and written in Visual Basic 6.0 which allows full control of all flow system components and simultaneous acquisition and processing of the data. The sensitivity measured as the slope of the calibration curve was improved 2.5- and 1.4-fold regarding those obtained by continuous- and stopped-flow systems, respectively. Other valuable features such as analytical throughput of 55 determinations per hour, limit of detection of 5 μg L−1 (3σblank/slope), relative standard deviation < 2% (n = 8), and a linear dynamic range up to 1800 μg L−1 were also achieved.  相似文献   

14.
Li2O-ZrO2-BaO-SiO2 glass fibers were produced and their surfaces were coated with zinc oxide. The fibers’ surface morphology was examined by scanning electron microscopy and the zinc oxide layer was characterized by mapping the Kα and Lα lines of zinc by energy dispersive X-ray spectroscopy. The results indicated that a homogeneous and porous layer of ZnO was formed on the fibers’ surface. This layer was subjected to a simultaneous determination of trihalomethanes using headspace-solid phase microextraction-gas chromatography. The study was conducted after evaluating the ideal time of incubation (15 min), extraction (15 min) and desorption (10 min), as well as the effect of the addition of salt (15%, m/v) on the analytical response. A good linear dynamic range was observed individually for trihalomethanes aqueous solutions containing 20 μg L−1 and 500 μg L−1 of trichloromethane, 15 μg L−1 and 250 μg L−1 of dichlorobromomethane and dibromochloromethane and 10 μg L−1 and 100 μg L−1 of tribromomethane, with all the compounds showing correlation coefficients higher than 0.9900.  相似文献   

15.
An analytical procedure with improved sensitivity was developed for cyanide determination in natural waters, exploiting the reaction with the complex of Cu(I) with 2,2′-biquinoline 4,4′-dicarboxylic acid (BCA). The flow system was based on the multi-pumping approach and long pathlength spectrophotometry with a flow cell based on a Teflon AF 2400® liquid core waveguide was exploited to increase sensitivity. A linear response was achieved from 5 to 200 μg L−1, with coefficient of variation of 1.5% (n = 10). The detection limit and the sampling rate were 2 μg L−1 (99.7% confidence level), and 22 h−1, respectively. Per determination, 48 ng of Cu(II), 5 μg of ascorbic acid and 0.9 μg of BCA were consumed. As high as 100 mg L−1 thiocyanate, nitrite or sulfite did not affect cyanide determination. Sulfide did not interfere at concentrations lower than 40 and 200 μg L−1 before or after sample pretreatment with hydrogen peroxide. The results for natural waters samples agreed with those obtained by a fluorimetric flow-based procedure at the 95% confidence level. The proposed procedure is then a reliable, fast and environmentally friendly alternative for cyanide determination in natural waters.  相似文献   

16.
Melchert WR  Rocha FR 《Talanta》2005,65(2):461-465
Nitrate determination in waters is generally carried out with cadmium filings and carcinogenic reagents or by reaction with phenolic compounds in highly concentrated sulfuric acid medium. In this work, it was developed a green analytical procedure for nitrate determination in natural waters based on direct spectrophotometric measurements in ultraviolet, using a flow-injection system with an anion-exchange column for separation of nitrate from interfering species. The proposed method employs only one reagent (HClO4) in a minimum amount (equivalent to 18 μL concentrated acid per determination), and allowed nitrate determination within 0.50-25.0 mg L−1, without interference of up to 200.0 mg L−1 humic acid; 1.0 mg L−1 NO2; 200.0 mg L−1 PO43−; 75.0 mg L−1 Cl; 50.0 mg L−1 SO42− and 15.0 mg L−1 Fe3+. The detection limit (99.7% confidence level) and the coefficient of variation (n = 20) were estimated as 0.1 mg L−1 and 0.7%, respectively. The results obtained for natural water samples were in agreement with those achieved by the reference method based on nitrate reduction with copperized cadmium at the 95% confidence level.  相似文献   

17.
A highly sensitive, specific, simple, and rapid chemiluminescence enzyme immunoassay (CLEIA) was developed for the determination of microcystin-LR (MC-LR). Several physicochemical parameters such as the chemiluminescent assay mediums, the dilution ratio of MC-LR-OVA conjugate, monoclonal antibody concentration, and peroxidase labeled antibody concentration were studied and optimized. Under optimum conditions, calibration curve obtained for MC-LR had detection limits of 0.032 ± 0.003 μg L−1, the 50% inhibition concentration (IC50) was 0.20 ± 0.02 μg L−1 and the quantitative detection range was 0.062-0.65 μg L−1. The proposed methods was successfully applied to the monitoring of MC-LR in spiked water samples without significant effect of the matrix, and the recovery of MC-LR added to water samples at different concentrations ranged from 80% to 115% with the coefficients of variation (CVs) less than 9%. The LOD attained from the calibration curves and the results obtained for the real samples demonstrate the potential use of CLEIA as a screening tool for the analysis of MC-LR in environmental samples.  相似文献   

18.
A centrifugal microfluidic device was developed for the rapid sequential determination of two critical environmental species, nitrate and nitrite, in water samples. The nitrate is reduced to nitrite and the nitrite is derivatized. The analytes are determined spectrophotometrically through the disc with a 1.4 mm pathlength. The detection limits are 0.05 and 0.16 mg L−1 for nitrite and nitrate respectively. The use of powdered reagents, the 100 μL sample required and the design of the device suggest that it would be suitable for field use.  相似文献   

19.
In this work, a fully automated flow system exploiting the advantages of the association of multi-pumping, multicommutation, binary sampling and merging zones, to accomplish the sequential determination of copper in serum and urine by flame atomic absorption spectrometry, is described. The developed flow system allowed multiple tasks, such as serum samples preparation (samples and standard solutions viscosity adjustment), serum copper (SCu) measurement, urine copper (UCu) pre-concentration and its subsequent elution and measurement, to be carried out sequentially. The implemented flow manifold presented a modular configuration consisting on two quasi-independent modules, each one accountable for a specific sample manipulation and whose combined operation under computer control enabled the determination of copper in a wide concentrations range.Once optimised and with a sample consumption of about 0.250 mL of serum and 7 mL of urine, the developed flow system allowed linear calibration plots up to 5 mg L−1 with a detection limit of 0.035 mg L−1 for SCu and linear calibration plots up to 300 μg L−1 with a detection limit of 0.67 μg L−1 for UCu. The sampling rate varied according to the module employed and was about 360 determinations h−1 (SCu module), 12 determinations h−1 (UCu module) or 24 determinations h−1 (12 urine and 12 serum samples; UCu and SCu modules simultaneously). Repeatability studies (R.S.D.%, n = 10) showed good precision for UCu at concentrations of 25 μg L−1 (2.54%), 50 μg L−1 (0.90%) and 100 μg L−1 (1.62%) as well as for SCu at concentrations of 0.25 mg L−1 (8.11%), 1 mg L−1 (3.11%) and 5 mg L−1 (0.90%). A comparative evaluation showed a good agreement between the results obtained in the analysis of UCu and SCu (n = 18) by both the developed methodology and the reference procedures. Accuracy was further evaluated by means of the analysis of reference samples (Seronorm™ Trace Elements Urine and Seronorm™ Trace Elements Serum) and the obtained results complied with the certified values.  相似文献   

20.
Two methods of the determination of cobalt and chromium in human urine of non-occupationally exposed populations—highly sensitive catalytic adsorptive stripping voltammetry (CAdSV) and electrothermal atomic absorption spectrometry (ET-AAS)—are evaluated and compared. The CAdSV methods are based on adsorptive accumulation of a cobalt-nioxime (1,2-cyclohexanedione dioxime) or a chromium-DTPA (diethylenetriammine-N,N,N′,N″,N″-pentaacetic acid) complexes on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of the catalytic reduction current of the adsorbed complex in the presence of sodium nitrite in case of cobalt or in the presence of sodium nitrate in case of chromium determination. In the CAdSV procedure UV-photolysis was used for the sample pre-treatment; the ET-AAS determination did not require any separate preliminary decomposition of the analyte urine samples. The accuracy of the procedures was checked by the analysis of commercially available quality control urine samples. The detection limits (3σ) were 0.13 μg l−1 for Co and 0.18 μg l−1 for Cr in ET-AAS determination and 0.007 μg l−1 for Co and 0.002 μg l−1 for Cr in CAdSV measurements. Precision (R.S.D.) was less than 5% for both methods. The study has shown that the CAdSV is a more reliable and sensitive technique for the determination of very low cobalt and chromium contents in urine, the detection of which is not possible when using the AAS technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号