首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A greener and sensitive procedure for spectrophotometric determination of phenols based on a multicommuted flow system with a 100 cm optical path flow cell is presented. The method exploited the oxidative coupling of phenolic compounds with 4-aminoantipyrine in alkaline medium containing potassium hexacyanoferrate(III). Sensitivity was 80-fold higher than that achieved with a 1 cm flow cell, making feasible the determination of phenols in the 10-100 μg l−1 range with a detection limit estimated as 1 μg l−1 phenol. The sampling rate and the coefficient of variation were estimated as 90 determinations per hour and 0.6% (n=10), respectively. The multicommutation approach allowed a 200-fold reduction of the reagent consumption in comparison with the reference batch method. Moreover, the chloroform extraction for analyte concentration is unnecessary in view of the increase in sensitivity. Recoveries within 93.3 and 106% were achieved for determination of phenol in natural and wastewater samples. Results agreed with the obtained by a reference method at the 95% confidence level.  相似文献   

2.
In this work a downscaled multicommuted flow injection analysis setup for photometric determination is described. The setup consists of a flow system module and a LED based photometer, with a total internal volume of about 170 μL. The system was tested by developing an analytical procedure for the photometric determination of iodate in table salt using N,N-diethyl-henylenediamine (DPD) as the chromogenic reagent. Accuracy was accessed by applying the paired t-test between results obtained using the proposed procedure and a reference method, and no significant difference at the 95% confidence level was observed. Other profitable features, such as a low reagent consumption of 7.3 μg DPD per determination; a linear response ranging from 0.1 up to 3.0 m IO3, a relative standard deviation of 0.9% (n = 11) for samples containing 0.5 m IO3, a detection limit of 17 μg L−1 IO3, a sampling throughput of 117 determination per hour, and a waste generation 600 μL per determination, were also achieved.  相似文献   

3.
An analytical procedure with improved sensitivity was developed for cyanide determination in natural waters, exploiting the reaction with the complex of Cu(I) with 2,2′-biquinoline 4,4′-dicarboxylic acid (BCA). The flow system was based on the multi-pumping approach and long pathlength spectrophotometry with a flow cell based on a Teflon AF 2400® liquid core waveguide was exploited to increase sensitivity. A linear response was achieved from 5 to 200 μg L−1, with coefficient of variation of 1.5% (n = 10). The detection limit and the sampling rate were 2 μg L−1 (99.7% confidence level), and 22 h−1, respectively. Per determination, 48 ng of Cu(II), 5 μg of ascorbic acid and 0.9 μg of BCA were consumed. As high as 100 mg L−1 thiocyanate, nitrite or sulfite did not affect cyanide determination. Sulfide did not interfere at concentrations lower than 40 and 200 μg L−1 before or after sample pretreatment with hydrogen peroxide. The results for natural waters samples agreed with those obtained by a fluorimetric flow-based procedure at the 95% confidence level. The proposed procedure is then a reliable, fast and environmentally friendly alternative for cyanide determination in natural waters.  相似文献   

4.
Silva SG  Rocha FR 《Talanta》2010,83(2):559-564
A flow system designed with solenoid micro-pumps is proposed for fast and greener spectrophotometric determination of free glycerol in biodiesel. Glycerol was extracted from samples without using organic solvents. The determination involves glycerol oxidation by periodate, yielding formaldehyde followed by formation of the colored (3,5-diacetil-1,4-dihidrolutidine) product upon reaction with acetylacetone. The coefficient of variation, sampling rate and detection limit were estimated as 1.5% (20.0 mg L−1 glycerol, n = 10), 34 h−1, and 1.0 mg L−1 (99.7% confidence level), respectively. A linear response was observed from 5 to 50 mg L−1, with reagent consumption estimated as 345 μg of KIO4 and 15 mg of acetylacetone per determination. The procedure was successfully applied to the analysis of biodiesel samples and the results agreed with the batch reference method at the 95% confidence level.  相似文献   

5.
A flow system based on the multicommutation is proposed for fast and clean determination of cyclamate. The procedure exploits the reaction of cyclamate with nitrite in acidic medium and the spectrophotometric determination of the excess of nitrite by iodometry. The flow system was designed with a set of solenoid micro-pumps to minimize reagent consumption and waste generation. The detection limit was estimated as 30 μmol L−1 (99.7% confidence level) with linear response ranging up to 3.0 mmol L−1. The coefficient of variation was estimated as 1.7% for a solution containing 2.0 mmol L−1 cyclamate (n = 20). About 60 samples can be analyzed per hour, consuming only 3 mg KI and 1.3 μg NaNO2, and generating 2.0 mL of effluent per determination, thus providing an environmentally friendly alternative to previously proposed procedures. Common artificial and natural sweeteners did not interfere when present in concentrations 10-times higher than cyclamate. The procedure was successfully applied for determination of cyclamate in artificial table sweeteners with results in agreement with the reference method at the 95% confidence level.  相似文献   

6.
A novel chemiluminescence gas-diffusion flow injection system for the determination of arsenic(III) in aqueous samples is described. The analytical procedure involves injection of arsenic(III) samples and standards into a 0.3 mol L−1 hydrochloric acid carrier stream which is merged with a reagent stream containing 0.2% (w/v) sodium borohydride and 0.015 mol L−1 sodium hydroxide. Arsine, generated in the combined carrier/reagent donor stream, diffuses across the hydrophobic Teflon membrane of the gas-diffusion cell into an argon acceptor stream and then reacts with ozone in the flow-through chemiluminescence measuring cell of the flow system. Under optimal conditions, the method is characterized by a wide linear calibration range from 0.6 μg L−1 to 25 mg L−1, a detection limit of 0.6 μg L−1 and a sample throughput of 300 samples per hour at 25 mg L−1 and 450 samples per hour at 25 μg L−1.  相似文献   

7.
A highly sensitive flow analysis system has been developed for the trace determination of reactive phosphate in natural waters, which uses a polymer inclusion membrane (PIM) with Aliquat 336 as the carrier for on-line analyte separation and preconcentration. The system operates under flow injection (FI) and continuous flow (CF) conditions. Under optimal FI conditions the system is characterised by a linear concentration range between 0.5 and 1000 μg L−1 P, a sampling rate of 10 h−1, a limit of detection of 0.5 μg L−1 P and RSDs of 3.2% (n = 10, 100 μg L−1) and 7.7% (n = 10, 10 μg L−1). Under CF conditions with 10 min stop-flow time and sample solution flow rate of 1.32 mL min−1 the flow system offers a limit of detection of 0.04 μg L−1 P, a sampling rate of 5 h−1 and an RSD of 3.4% (n = 5, 2.0 μg L−1). Interference studies revealed that anions commonly found in natural waters did not interfere when in excess of at least one order of magnitude. The flow system, operating under CF conditions, was successfully applied to the analysis of natural water samples containing concentrations of phosphate in the low μg L−1 P range, using the multipoint standard addition method.  相似文献   

8.
Spectrophotometric flow injection methods were developed for the individual determination of nitrite or nitrate, and for the simultaneous determination of nitrite and nitrate, in soil samples. Nitrite was determined directly using a modified version of the Griess-Ilosvay diazo-coupling reaction, measuring at 543 nm the absorbance of the azo-dye complex formed. Simultaneous nitrite and nitrate determinations were based on on-line nitrate reduction in a micro column containing copperised cadmium. A single chromogenic reagent containing all the necessary reactants was used in both methods. For determinations, the chemical and instrumental variables were optimised by univariate analysis and simplex chemometric method. The optimised conditions gave a linear calibration range between 0.05 and 1.6 µg m L− 1 for N-NO2 and between 0.05 and 7.0 µg m L− 1 for N-NO3. The detection limits for nitrite and nitrate were 22 µg L− 1 and 44 µg L− 1 respectively. The proposed methods allowed up to 35-40 samples per hour to be analysed with good precision. The simultaneous method was successfully used for the determination of nitrite and nitrate in soil samples (the results obtained were validated against those obtained by reference methods). The proposed methods are simpler and faster than conventional methods and could be routinely used in environmental monitoring laboratories.  相似文献   

9.
A cost-effective sequential injection monosegmented flow analysis (SI-MSFA) with anodic stripping voltammetric (ASV) detection has been developed for determination of Cd(II) and Pb(II). The bismuth film working electrode (BiFE) was employed for accumulative preconcentration of the metals by applying a fixed potential of −1.10 V versus Ag/AgCl electrode for 90 s. The SI-MSFA provides a convenient means for preparation of a homogeneous solution zone containing sample in an acetate buffer electrolyte solution and Bi(III) solution for in situ plating of BiFE, ready for ASV measurement at a flow through thin layer electrochemical cell. Under the optimum conditions, linear calibration graphs in range of 10-100 μg L−1 of both Cd(II) and Pb(II) were obtained with detection limits of 1.4 and 6.9 μg L−1 of Cd(II) and Pb(II), respectively. Relative standard deviations were 2.7 and 3.1%, for 11 replicate analyses of 25 μg L−1 Cd(II) and 25 μg L−1 Pb(II), respectively. A sample throughput of 12 h−1 was achieved with low consumption of reagent and sample solutions. The system was successfully applied for analysis of water samples collected from a draining pond of zinc mining, validating by inductively coupled plasma-optical emission spectroscopy (ICP-OES) method.  相似文献   

10.
The formation of the Mn(III)/EDTA complex in a flow system with solenoid micro-pumps was exploited for fast manganese determination in freshwater. Manganese(II) was oxidized in a solid-phase reactor containing lead dioxide immobilized on polyester. Long pathlength spectrophotometry was exploited to increase sensitivity, aiming to reach the threshold limit established by environmental legislation. A linear response was observed from 25 to 1500 μg L− 1, with a detection limit of 6 μg L− 1 (99.7% confidence level). Sample throughput and coefficient of variation were 36 samples/h and 2.6% (n = 10), respectively. EDTA consumption and waste generation were estimated as 500 μg and 3 mL per determination, respectively. The amount of Pb in the residue corresponds to 250 μg per determination and a solid-phase reactor could be used for up to 1600 determinations. Adsorption in active charcoal avoided interferences caused by organic matter and the developed procedure was successfully applied for determination of manganese in freshwater samples. Results were in agreement with those attained by GFAAS at the 95% confidence level.  相似文献   

11.
A sensitive reagent-injection flow analysis method for the spectrophotometric determination of nitrate in marine, estuarine and fresh water samples is described. The method is based on the reduction of nitrate in a micro column containing zinc granules at pH 6.5. The nitrite formed is reacted with sulfanilamide and N-(1-naphthyl)ethylene diamine (Griess reagent), and the resulting azo compound is quantified spectrophotometrically at 520 nm. Water samples in the range of 3-700 μg L−1 NO3-N can be processed with a throughput of up to 40 samples per hour, a detection limit of 1.3 μg L−1 and reproducibility of 1.2% RSD (50 μg L−1 NO3-N, n = 10). The proposed method was successfully applied for the determination of nitrate in estuarine waters and the reliability was assessed by the analyses of certified reference materials and recovery experiments. The method is suitable for waters with a wide range of salinities, and was successfully used for more than 3200 underway nitrate measurements aboard SV Pelican1 in the “Two Bays” cruise in January 2010.  相似文献   

12.
A greener analytical procedure based on flow-injection solid-phase spectrophotometry is proposed for iron determination. Iron(II) is reversibly retained on 1-(2-thiazolylazo)-2-naphthol immobilized on C18-bonded silica, yielding a brown complex. The metal ion is eluted as iron(II) with a small volume of a diluted acid solution without removing the immobilized reagent, which can be used for at least 100 determinations. Other chemicals (buffer and reducing agent) were carefully selected taking into account the analytical performance and toxicity. The developed procedure is 10-fold more sensitive in comparison to the analogous procedure based on measurements in solution, being suitable for the determination of iron in water samples with good accuracy and precision. The detection limit (99.7% confidence level), sampling rate and coefficient of variation (n = 10) were estimated as 15 μg L−1, 25 measurements per hour and 4.0%, respectively. The proposed procedure involves a reduced effluent generation (3.6 mL per determination) and consumes micro amounts of reagents.  相似文献   

13.
A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammetric cell was developed. A low-cost small scale voltammetric cell was fabricated from disposable pipet tip and microcentrifuge tube with volume of about 3 mL for conveniently incorporated with the SI system. A home-made UV digestion unit was fabricated employing a small size and low wattage UV lamps and flow reactor made from PTFE tubing coiled around the UV lamp. An in-line single standard calibration or a standard addition procedure was developed employing a monosegmented flow technique. Performance of the proposed system was tested for in-line digestion of model water samples containing metal ions and some organic ligands such as strong organic ligand (EDTA) or intermediate organic ligand (humic acid). The wet acid digestion method (USEPA 3010a) was used as a standard digestion method for comparison. Under the optimum conditions, with deposition time of 180 s, linear calibration graphs in range of 10-300 μg L−1 Zn(II), 5-200 μg L−1 Cd(II), 10-200 μg L−1 Pb(II), 20-400 μg L−1 Cu(II) were obtained with detection limit of 3.6, 0.1, 0.7 and 4.3 μg L−1, respectively. Relative standard deviation were 4.2, 2.6, 3.1 and 4.7% for seven replicate analyses of 27 μg L−1 Zn(II), 13 μg L−1 Cd(II), 13 μg L−1 Pb(II) and 27 μg L−1 Cu(II), respectively. The system was validated by certified reference material of trace metals in natural water (SRM 1640 NIST). The developed system was successfully applied for speciation of Cd(II) Pb(II) and Cu(II) in ground water samples collected from nearby zinc mining area.  相似文献   

14.
Comitre AL  Reis BF 《Talanta》2005,65(4):846-852
A not expensive automatic flow system based on multicommutation and exploiting the liquid-liquid extraction methodology for the determination of lead in plant material is described. The spectrophotometric procedure for lead determination was based on the reaction with dithizone followed by extraction using an organic solvent. The facilities afforded by the multicommutation approach allowed the use of an air stream as carrier, thus contributing to reduce the overall waste generation. The results obtained analysing plant materials compare very well with those obtained employing inductive coupled plasma optical emission spectrometry (ICP OES) at 90% confidence level. Others profitable features such as a linear response range between 50 and 200 μg l−1 Pb (r = 0.999); a sampling rate of 15 determination per hour; a relative standard deviation of 1.8% (n = 12) for a typical sample containing 163 μg l−1 Pb; a detection limit of 12 μg l−1; a reagent consumption of 4.5 mg dithizone; and a waste generation of 225 μl organic solvent per determination were also achieved.  相似文献   

15.
Cobalt(II) phthalocyanine [Co(II)Pc] is used as both an ionophore and chromogen for batch and flow injection potentiometric and spectrophotometric determination of anionic surfactants (SDS), respectively. The potentiometric technique involves preparation of a polymeric membrane sensor by dispersing [Co(II)Pc] in a plasticized PVC membrane. Under batch mode of operation, the sensor displays a near-Nernstian slope of −56.5 mV decade−1, wide response linear range of 7.8 × 10−4 to 8.0 × 10−7 mol L−1, lower detection limit of 2.5 × 10−7 mol L−1 and exhibits high selectivity for anionic surfactants in the presence of many common ions. Under hydrodynamic mode of operation (FIA), the slope of the calibration plot, limit of detection, and working linear range are −51.1 mV decade−1, 5.6 × 10−7 and 1.0 × 10−3 to 1.0 × 10−6 mol L−1, respectively. The spectrophotometric method is based on the use of [Co(II)Pc] solution in dimethylsulfoxide (DMSO) as a chromogenic reagent. The maximum absorption of the reagent at 658 nm linearly decreases with the increase of anionic surfactant over the concentration range 2-30 μg mL−1. The lower limit of detection is 1 μg mL−1 and high concentrations of many interfering ions are tolerated. Flow injection spectrophotometric measurements are carried out by injection of the surfactant test solution in a stream of the reagent in DMSO. The sample throughput, working range and lower detection limit are 25-30 samples h−1, 4-60 and 2 μg mL−1, respectively. The potentiometric and spectrophotometric techniques are applied to the batch and flow injection measurements of anionic surfactants in some commercial detergent products. The results agree fairly well with data obtained using the standard methylene blue spectrophotometric method.  相似文献   

16.
A new catalytic oxidative coupling reaction of N,N-dimethyl-p-phenylenediamine (DPD) with 1,3-phenylenediamine (mPD) in the presence of hydrogen peroxide has been developed for trace metals analysis. The rate of the oxidation/coupling reaction can be enhanced significantly by iron, copper and cobalt. These metal ions can catalyze the oxidation reaction of DPD to form an oxidized product; the oxidized DPD was then coupled with mPD to give a blue-colored product which was measured spectrophotometrically at 650 nm. On the basis of such a reaction scheme, two simple flow injection analysis methods for the determination of copper and iron have been developed. Detailed studies on chemical and FIA variables affecting the sensitivity of the detection were carried out. Interferences from several ionic species were examined for the determination of copper: the interference effect by Fe(III) and Fe(II) up to 1.5 mg L−1 was successfully suppressed by pretreating sample with ammonium acetate buffer solution (pH 8.4). Good linearity of a standard calibration graph was obtained over the ranges of 0-8 and 0-2 μg L−1 of copper and iron, respectively, and the detection limits were 0.05 and 0.02 μg L−1 for copper and iron, respectively. The precision of the methods in terms of relative standard deviation were 1.4 and 1.5% of R.S.D. which were obtained from 10 injections of 2.0 and 1.0 μg L−1 of standard copper and iron, respectively. The proposed methods were successfully applied to the determination of copper and iron in tap and river water samples. The accuracy of the proposed methods was assessed by the analysis of certified reference material of river water.  相似文献   

17.
In this work, a fully automated flow system exploiting the advantages of the association of multi-pumping, multicommutation, binary sampling and merging zones, to accomplish the sequential determination of copper in serum and urine by flame atomic absorption spectrometry, is described. The developed flow system allowed multiple tasks, such as serum samples preparation (samples and standard solutions viscosity adjustment), serum copper (SCu) measurement, urine copper (UCu) pre-concentration and its subsequent elution and measurement, to be carried out sequentially. The implemented flow manifold presented a modular configuration consisting on two quasi-independent modules, each one accountable for a specific sample manipulation and whose combined operation under computer control enabled the determination of copper in a wide concentrations range.Once optimised and with a sample consumption of about 0.250 mL of serum and 7 mL of urine, the developed flow system allowed linear calibration plots up to 5 mg L−1 with a detection limit of 0.035 mg L−1 for SCu and linear calibration plots up to 300 μg L−1 with a detection limit of 0.67 μg L−1 for UCu. The sampling rate varied according to the module employed and was about 360 determinations h−1 (SCu module), 12 determinations h−1 (UCu module) or 24 determinations h−1 (12 urine and 12 serum samples; UCu and SCu modules simultaneously). Repeatability studies (R.S.D.%, n = 10) showed good precision for UCu at concentrations of 25 μg L−1 (2.54%), 50 μg L−1 (0.90%) and 100 μg L−1 (1.62%) as well as for SCu at concentrations of 0.25 mg L−1 (8.11%), 1 mg L−1 (3.11%) and 5 mg L−1 (0.90%). A comparative evaluation showed a good agreement between the results obtained in the analysis of UCu and SCu (n = 18) by both the developed methodology and the reference procedures. Accuracy was further evaluated by means of the analysis of reference samples (Seronorm™ Trace Elements Urine and Seronorm™ Trace Elements Serum) and the obtained results complied with the certified values.  相似文献   

18.
Páscoa RN  Tóth IV  Rangel AO 《Talanta》2011,84(5):1267-1272
This work exploits a multi-syringe injection analysis (MSFIA) system coupled with a long liquid waveguide capillary cell for the spectrophotometric determination of zinc and copper in waters. A liquid waveguide capillary cell (1.0 m pathlength, 550 μm i.d. and 250 μL internal volume) was used to enhance the sensitivity of the detection. The determination for both ions is based on a colorimetric reaction with zincon at different pH values. The developed methodology compares favourably with other previously described procedures, as it allows to reach low detection limits for both cations (LODs of 0.1 and 2 μg L−1, for copper and zinc, respectively), without the need for any pre-concentration step. The system also provided a linear response up to 100 μg L−1 with a high throughput (43 h−1) and low reagent consumption and effluent production. The developed work was applied to natural waters and three certified reference water samples.  相似文献   

19.
Melchert WR  Rocha FR 《Talanta》2005,65(2):461-465
Nitrate determination in waters is generally carried out with cadmium filings and carcinogenic reagents or by reaction with phenolic compounds in highly concentrated sulfuric acid medium. In this work, it was developed a green analytical procedure for nitrate determination in natural waters based on direct spectrophotometric measurements in ultraviolet, using a flow-injection system with an anion-exchange column for separation of nitrate from interfering species. The proposed method employs only one reagent (HClO4) in a minimum amount (equivalent to 18 μL concentrated acid per determination), and allowed nitrate determination within 0.50-25.0 mg L−1, without interference of up to 200.0 mg L−1 humic acid; 1.0 mg L−1 NO2; 200.0 mg L−1 PO43−; 75.0 mg L−1 Cl; 50.0 mg L−1 SO42− and 15.0 mg L−1 Fe3+. The detection limit (99.7% confidence level) and the coefficient of variation (n = 20) were estimated as 0.1 mg L−1 and 0.7%, respectively. The results obtained for natural water samples were in agreement with those achieved by the reference method based on nitrate reduction with copperized cadmium at the 95% confidence level.  相似文献   

20.
A HPLC method using a coulometric electrode array detector (CEAD) to analyse 4-ethylcatechol in wine was established. The procedure does not require any sample preparation or analyte derivatisation and performs chromatographic separation in a short time. The assay method is linear up to 1520 μg L−1 and precise (R.S.D. < 3%), with limits of detection and quantitation of 1.34 μg L−1 and 2.2 μg L−1, respectively. Recoveries in spiked wine samples ranged from 95% to 104% with a median value of 102% and matrix effects were not observed. The method was applied to the evaluation of the concentration of 4-EC in 250 commercial Italian wines. The red wines analysed had median, 75° percentile and maximum values of 37 μg L−1, 89 μg L−1 and 1610 μg L−1, respectively. For Sangiovese-based wines the mean ratios of 4-EP and 4-EG to 4-EC were 3.7:1 and 0.7:1, respectively. The feasibility of a cheaper fluorimetric approach to 4-EC quantification was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号