首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
The ion storage capacity (<106) of ion trap mass spectrometers (ITMS) can sometimes limit the ability to analyze trace components in complex mixtures. We demonstrate here that resonant laser ablation (RLA) can offer a degree of selectivity in the ionization process, thus allowing the preferential accumulation of analyte ions in the trap. Selectivities of 75 and 50, for chromium and iron, respectively, are reported here for RLA of stainless steel in an ITMS. We offer suggestions to improve both the selectivity and the ionization efficiency, relative to the results reported here.  相似文献   

2.
3.
The effect of laser defocusing on analytical performance of laser ablation inductively coupled plasma atomic emission spectrometry (LA-ICP-AES) was studied by varying laser focus conditions with respect to the surface of a low-alloy steel and a powdered sediment pellet. Laser-induced plasma (LIP) and LA-ICP-AES emission signals and LIP excitation temperatures (LIP Tex) were determined and compared for different laser defocus conditions. LIP Fe and LA-ICP-AES Fe emission signals and LIP Tex decreased when the laser was defocused for the low-alloy steel. On the other hand, when the sediment pellet was ablated, LIP Tex decreased when the laser was defocused. However, LA-ICP-AES Fe emission signals increased at first, then decreased when the laser was defocused more. It was concluded that LIP Tex and LIP and LA-ICP-AES Fe emission signals are dependent on laser shot conditions (focus–defocus), and are also dependent on sample type (texture, mineralogy, hardness, conductivity and heat capacity).  相似文献   

4.
Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.  相似文献   

5.
A simple device was designed to measure the acoustic signal accompanying laser ablation. The potential use of this signal for laser ablation-inductively coupled plasma atomic emission was examined. A frequency quadrupled pulsed Nd:YAG laser radiation was used for the ablation of glass, steel and ceramic samples. The relation between the acoustic signal, the laser energy, the analyte signal and the amount of ablated material was studied and evidence of the use of the acoustic signal for the exact focusing of the laser beam onto the sample surface was given. A more intense acoustic signal was observed for the exact focusing with a formation of larger ablation craters in glass and ceramics.  相似文献   

6.
The sensitivity of laser-induced breakdown spectroscopy of solid samples depends on the number of ablated and excited analytes. Laser ablation of solid samples can be enhanced by using collinear multiple laser pulses, for example double or triple pulses, rather than single laser pulses with the same total laser pulse energy. The ablation rates and the plasma conditions are affected by the ambient gas. In this study laser ablation was examined by varying the interpulse separation of the multiple pulses, within double and triple-pulse bursts, and the gas mass density at constant gas pressure. Different ambient gases and gas mixtures consisting of argon, oxygen, and nitrogen were used to study their effect on ablation rates. In a pure argon atmosphere (99.999% v/v Ar) the ablation burst number required to penetrate a steel plate of thickness 100 μm is reduced by a factor of approximately six by use of triple-pulse bursts with a symmetric interpulse separation of 15 μs rather than single pulses with the same total burst energy of 105 mJ. For double and single pulses the factors are 1.6 for Ar and 2.8 for synthetic air. Analyte lines are 4 to 8 times more intense if an argon atmosphere, rather than air, is used.  相似文献   

7.
The source of signal variations that governs the analytical performance of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was investigated in this study. In order to specify the source of signal variations of LA-ICP-MS, laser-induced plasma (LIP) Fe emission, LA-ICP-MS Fe+ and LA-ICP-MS Ni+ signals were used as internal standards for the determination of trace elements in low-alloy steel certified reference materials (BS 50D and JSS 1005-1008). Fe 1373.5 nm emission signals from LIP were measured, while trace element LA-ICP-MS signals were collected. After that, the LIP emission signals, LA-ICP-MS Fe+ and LA-ICP-MS Ni+ signals were used as internal standards, and the analytical performance was evaluated by the RSDs and the correlation coefficients (r) of the calibration curves. The improvement factors were dependent on the internal standardization methods. Analytical precisions (RSDs) of trace element LA-ICP-MS signals were improved by factors of 1.5-3.3 using LIP Fe emission signals as an internal standard. The improvement factors of 2.5 - 5.9 and 4.1 - 17 were obtained by using LA-ICP-MS Fe+ and LA-ICP-MS Ni+ signals as internal standards, respectively. Better correlation coefficients (r) were also obtained using the LA-ICP-MS signal compensation (0.9985 by LA-ICP-MS Fe+ and 0.9996 by LA-ICP-MS Ni+) rather than the LIP Fe emission compensation (0.9932). In this paper we compare and discuss the analytical performance achieved by LA-ICP-MS using LIP Fe emission, LA-ICP-MS Fe+ and LA-ICP-MS Ni+ signals as internal standards.  相似文献   

8.
A simple device was designed to measure the acoustic signal accompanying laser ablation. The potential use of this signal for laser ablation-inductively coupled plasma atomic emission was examined. A frequency quadrupled pulsed Nd:YAG laser radiation was used for the ablation of glass, steel and ceramic samples. The relation between the acoustic signal, the laser energy, the analyte signal and the amount of ablated material was studied and evidence of the use of the acoustic signal for the exact focusing of the laser beam onto the sample surface was given. A more intense acoustic signal was observed for the exact focusing with a formation of larger ablation craters in glass and ceramics. Received: 25 June 1998 / Revised: 25 September 1998 / Accepted: 30 September 1998  相似文献   

9.
Resonant laser ablation (RLA) is used as a source to selectively generate multiple metal ion species from the same sample. The capability of rapidly changing metal ions for gas-phase ion chemistry studies is a significant advantage in ion-molecule chemistry. The simple experimental arrangement uses relatively modest laser pulse energies (≤ 25 µJ/pulse) from a tunable dye laser to desorb and selectively ionize different metal atoms from a multicomponent sample. In turn, this allows the chemistry of several components to be investigated without breaking vacuum or altering the experimental geometry. This work demonstrates the use of RLA as a selective source of several reagent metal ions for gas-phase ion chemistry investigations. In particular, the reactivity of acetone with Cr+, Fe+, Ni+, and Cu+ was examined for metal ions selectively created by RLA from a standard steel sample.  相似文献   

10.
Silicon, zirconium and aluminum sol–gels were investigated as suitable starting materials for tunable matrix calibration standards for laser-induced breakdown spectroscopy. A fast and simple preparation method was developed, using aluminum i-propoxide as the precursor in the sol–gel synthesis, which allows one to quickly prepare solid calibration standards offering very homogenous analyte distribution in the matrix, low optical spectral background, as well as reproducible behavior towards laser ablation and vaporization. The surface of the calibration targets and the morphology of the ablation craters were examined by optical and scanning electron microscopy, and the material ejection process was observed by shadowgraph imaging. Low μg/g detection limits and 4–15% relative standard deviation were measured by laser induced breakdown spectroscopy for Pb, Cr and Be used as internal standards.  相似文献   

11.
This paper focuses on the interpretation of the origin of the continuum radiation in Laser Induced Plasma (LIP) emission spectra, a subject that has received little consideration in the literature when compared to the analysis of the line emission spectrum. The understanding of the spectral peculiarities observed immediately after the laser pulse, when the continuum radiation prevails on discrete emission lines, can be extremely important to retrieve the initial conditions of LIP and to correlate the produced plasma to the ablation mechanism. In this work, in addition to a qualitative interpretation of the LIP continuum in the initial stage of expansion, a methodology is proposed for a better measurement of the atomic temperature in the expansion stage of the LIP. Such methodology is based on the analysis of the combined Boltzmann and Planck plots. The results obtained stress once again the importance of considering non equilibrium effects in the initial stage of LIP expansion.  相似文献   

12.
Spectral analysis of laser-induced plasmas for surface ablation has demonstrated the possibility of analyte signal enhancement with dual-pulse configurations as compared with traditional single-pulse LIBS. Using an orthogonal dual-pulse arrangement, measurements were performed using glass microscope slides to allow both spectral analysis as well as optical transmission measurements. Order of magnitude enhancements in Mg and Si atomic emission signal peak intensities were recorded along with similar enhancements of the continuum emission for dual-pulse LIBS as compared to single-pulse. Peak-to-base measurements showed a roughly 50% increase, while signal-to-noise ratios were enhanced by a factor of 2–3. Temporal analysis of the measured transmitted laser pulse waveforms showed no significant differences between dual-pulse and single-pulse LIBS configurations, providing additional insight into the possible laser coupling processes for the dual-pulse configuration.  相似文献   

13.
In resonance-enhanced laser-induced breakdown spectroscopy, the sample was ablated by a laser pulse and the expanding plume was photoresonantly rekindled by a dye laser pulse. By sampling aluminum alloys for Mg, Pb, Si, and Cu, we showed that for the ablation step, Gaussian beams gave 2 to 3× better signal-to-noise ratio (SNR) than non-uniform beams. For the rekindling step, if no further sample destruction was allowed, dye laser pulses that intercepted the plume transversely gave 6 to 12× higher SNR than the longitudinal case. By combining Gaussian beams and transverse rekindling, the mass limit-of-detection for Mg was about 100 amol while non-resonant analysis was 10× more destructive. Sub-monolayer of oxides grown on laser-cleaned aluminum surfaces was detected by monitoring the AlO emissions of rekindled plumes; without resonant enhancements, they were not detectable no matter how destructive was the analysis. Time resolved studies showed that the Gaussian beam produced less dispersed plumes and that a stronger dye laser beam directed transversely heated up a bigger plume mass without over-heating the plume core. The analyte emissions were sustained while the continuum background remained low.  相似文献   

14.
应用半经典的微扰论方法计算出了氯原子光诱导能级移动和增宽,其大小与光强成正比光频率为41018 cm-1时,氯原子初态3p52P03/2和3p52P01/2在非共振情况下,光移动分别为67.6和26.9 MHz/Wμm-2.当激光频率v接近3p52P03/2→4s2P3/2的跃迁频率时,氯原子基态3p52P03/2的|MJ,MI〉=|-1/2,3/2〉→|1/2,3/2〉超精细ESR谱线发生近共振频率光移动,大小量级为0.1 MHz/Wμm-2,能级增宽一般远小于光移动  相似文献   

15.
Fundamental parameters influencing the ion‐producing efficiency of palladium nanostructures (nanoparticles [Pd‐NP], nanoflowers, nanofilms) during laser irradiation were studied in this paper. The nanostructures were immobilized on the surface of different solid inorganic carrier materials (porous and mono‐crystalline silicon, anodic porous aluminum oxide, glass and polished steel) by using classical galvanic deposition, electroless local deposition and sputtering. It was the goal of this study to investigate the influence of both the nanoparticular layer as well as the carrier material on ion production for selected analyte molecules. Our experiments demonstrated that the dimensions of the synthesized nanostructures, the thickness of the active layers, surface disorders, thermal conductivity and physically or chemically adsorbed water influenced signal intensities of analyte ions during surface‐assisted laser desorption/ionization (SALDI) while no effects such as plasmon resonance, photoelectric effect or catalytic activity were expected to occur. Excellent LDI abilities were seen for Pd‐NPs immobilized on steel, while Pd nanoflowers on porous silicon exhibited several disadvantages; viz, strong memory effects, dependency of the analytical signal on amount of physically and chemically adsorbed water inside porous carrier, reduced SALDI activity from unstable connections between Pd and semiconductor material, decrease of the melting point of pure silicon after Pd immobilization and resulting strong laser ablation of metal/semiconductor complex, as well as significantly changed surface morphology after laser irradiation. The analytical performance of Pd‐NP/steel was further improved by applying a hydrophobic coating to the steel surface before galvanic deposition. This procedure increased the distance between Pd‐NPs, thus reducing thermal stress upon LDI; it simultaneously decreased spot sizes of deposited sample solutions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Molecular beam techniques for study of collisional and spectroscopic processes have recently been enhanced by use of static electric or magnetic fields to orient or align molecules with permanent dipole moments. A more general method is now in prospect, applicable both to alignment and to spatial trapping of molecules. This exploits the anisotropic interaction of the electric field vector of intense laser radiation with the dipole moment induced in a polarizable molecule by the laser field. The interaction creates directional superpositions of field-free states that correspond to oblate spheroidal wavefunctions, with eigenenergies that decrease with increasing field strength. We suggest that this polarizability interaction produces the marked alignment found in laser-induced dissociative ionization of CO by the Saclay group. We also present calculations illustrating the feasibility of spattal trapping. In combination with supermirror focussing and buffer-gas cooling, an intense infrared laser can typically confine molecules for long-times (-hours) within a small (-picoliter) and cold (?1°K) “pocket of light.”  相似文献   

17.
The detection sensitivity of laser-induced breakdown spectroscopy (LIBS) is improved by coupling it with a laser-induced fluorescence method. A waterjet sample containing 500 ppm of Pb as an analyte was ablated by a 266 nm, frequency-quadrupled Q-switchedNd:YAG laser at an energy of ~ 260 μJ. After a short delay the resulting plume was re-excited with a 283.306 nm, nanosecond pulse dye laser at energies ranging from 45 to 100 nJ. The limit of detection (LOD) of lead in water was determined both by the single-pulse LIBS technique and Laser Ablation coupled with Laser-Induced Fluorecence (LA–LIF) method. It was found to be 75 ppm in the case of single-pulse LIBS and 4.3 ppm for LA–LIF. When the resonant pulse was detuned from the transition wavelength the LA–LIF signal disappeared demonstrating the resonant selectivity of this technique.  相似文献   

18.
Open-path laser-induced plasma spectrometry has been studied for elemental analysis at a distance of 45 m from the target. The 230-mJ pulsed radiation of a Q-switched Nd:YAG laser at 1064 nm has been used to produce a plasma on the sample and light emission has been collected under an off-axis open-path scheme. Under such conditions, the main variables influencing the signal response such as beam focal conditions, laser incidence angle and laser penetration depth have been identified and diagnosed on the basis of spectral signal-to-noise ratio considerations. The incidence angle is critical beyond 60°. Crater morphology and ablation rates have been studied also. A semi-quantitative analysis of several stainless steel grades has been implemented using a pattern recognition algorithm, which allowed to discriminate successfully the samples on the basis of their variable content in alloying elements.  相似文献   

19.
GeC 3Ge was previously (1) produced by the dual laser ablation of germanium and carbon rods, and the nu 3(sigma u) carbon-carbon stretching fundamental was assigned at 1920.7 cm (-1). This paper presents results from new experiments that have enhanced the production of the molecule via laser ablation of a single sintered germanium-carbon rod, thus enabling the identification of two additional infrared active vibrational fundamentals. Ge participates strongly in one of these, the nu 4(sigma u) mode, and the corresponding Ge isotopic shifts reported here are the first for a germanium-carbon species. GeC 3Ge was produced by trapping the products from the laser evaporation of the Ge-C rod, in solid Ar at approximately 10 K, and recording the FTIR (Fourier transform infrared) spectra. Comparison of (70,72,73,74,76)Ge and (13)C isotopic shift measurements with the predictions of density functional theory calculations (DFT) at the B3LYP/cc-pVDZ level confirms the identification of the nu 4(sigma u) stretching fundamental at 735.3 cm (-1) and the nu 6(pi u) bending fundamental at 580.1 cm (-1) for linear GeC 3Ge.  相似文献   

20.
The ablation properties and analytical behavior of a uranium-zirconium alloy have been examined using tandem laser ablation/pneumatic nebulization sample introduction in conjunction with inductively coupled atomic emission spectrometry (LA-ICP-AES). An apparent change in composition of the laser ablation aerosol (1–15 GW cm−2 Zr deficient, 40–250 GW cm−2 Zr rich) is observed. This phenomenon is independent of laser wavelength. After collection and bulk chemical analysis of the ablation product, this phenomenon is attributed to an atomization interference in the ICP.

Two distinct modes of laser ablation have been observed which depend upon the wavelength of the ablating laser (visible or near infrared). These two modes result in characteristic ablation crater types and analyte emission behavior. Ablation yields at 1064 nm are dependent upon laser power density only, whilst yields at 532 nm are dependent upon both laser power density and illumination area. The latter is considered to be symptomatic of direct interaction of the laser light with the surface, and the former, of indirect coupling of laser energy, via a micro-plasma, into the surface.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号