首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper describes the extraction and analysis of Polyaromatic Hydrocarbons (PAHs) in five points of the Patos Lagoon Estuary. These points were in the area named “colony Z3”, which is a craft fishermen community in Pelotas City (southern Brazil). Samples were collected in July of 2007, and the concentrations of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatography coupled to a mass spectrometry detector (GC/MS). The PAH concentrations ranged from 4.7 to 112.5 µg kg− 1 dry weight. Sediment samples with the highest PAH concentrations appeared at point 2, which is a pier. The correlation between the total organic material (TOM) and the total PAH concentration suggests that TOM plays an important role in controlling the PAH levels in sediments. According to the observed ratios of individual PAHs, the contamination in the studied areas originated both from high-temperature pyrolytic processes and petrogenic sources. The levels of PAHs at the studied sites in the Z3 colony (Patos Lagoon) were low enough that they should not exert adverse biological effects.  相似文献   

2.
Nonpolar organic compounds (NPOCs) in ambient particulate matter (PM) commonly include n-alkanes, branched alkanes, hopanes and steranes, and polycyclic aromatic hydrocarbons (PAHs). The recent development of thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) has greatly reduced time and labor in their quantification by eliminating the laborious solvent extraction and sample concentration steps in the traditional approach that relies on solvent extraction. The simplicity of the TD-GCMS methods has afforded us concentration data of NPOCs in more than 90 aerosol samples in two aerosol field studies and 20 vehicular emissions-dominated source samples in Hong Kong over the past few years. In this work, we examine the interspecies relationships between select NPOCs and their concentration ratios to elemental carbon (EC) among the ambient samples and among the source samples. Our analysis indicates that hopanes were mainly from vehicular emissions and they were significantly oxidized in ambient PM. The hopane/EC ratio in ambient samples was on average less than half of the ratio in vehicular emissions-dominated source samples. This highlights the necessity in considering oxidation loss in applying organic tracer data in source apportionment studies. Select PAH/EC ratio–ratio plots reveal that PAHs had diverse sources and vehicular emissions were unlikely a dominant source for PAHs in Hong Kong. Biomass burning and other regional sources likely dominated ambient PAHs in Hong Kong.  相似文献   

3.
Sea surface microlayer (SML) and sea water samples (SSW) collected in the Gerlache Inlet Sea (Antarctica) were analysed for n-alkanes and polycyclic aromatic hydrocarbons (PAHs). The SML is a potential enrichment site of hydrophobic organic compounds compared to the underlying water column. Total concentration ranges of n-alkanes and PAHs (dissolved and particulate) in subsurface water (− 0.5 m depth) were 272-553 ng l− 1 (mean: 448 ng l− 1) and 5.27-9.43 ng l− 1 (mean: 7.06 ng l− 1), respectively. In the SML, the concentration ranges of n-alkanes and PAHs were 353-968 ng l− 1 (mean: 611 ng l− 1) and 7.32-23.94 ng l− 1 (mean: 13.22 ng l− 1), respectively. To evaluate possible PAH contamination sources, specific PAH ratios were calculated. The ratios reflected a predominant petrogenic input. A characterisation of surface active substances was also performed on SML and SSW samples, both by gas bubble extraction, and by dynamic surface tension measurements. Results showed a good correlation between n-alkanes, PAHs and refractory organic matter.  相似文献   

4.
An analytical method for the determination of US EPA priority pollutant 16 polycyclic aromatic hydrocarbons (PAHs) in edible oil was developed by an isotope dilution gas chromatography–mass spectrometry (GC–MS). Extraction was performed with ultrasonication mode using acetonitrile as solvent, and subsequent clean-up was applied using narrow gel permeation chromatographic column. Three deuterated PAHs surrogate standards were used as internal standards for quantification and analytical quality control. The limits of quantification (LOQs) were globally below 0.5 ng/g, the recoveries were in the range of 81–96%, and the relative standard deviations (RSDs) were lower than 20%. Further trueness assessment of the method was also verified through participation in international cocoa butter proficiency test (T0638) organised by the FAPAS with excellent results in 2008. The results obtained with the described method were satisfying (z ≤ 2). The method has been applied to determine PAH in real edible oil samples.  相似文献   

5.
Summary The concentrations of lipids were determined in atmospheric particle samples, collected seasonally, in an urban coastal area of the Island of Crete. Lipid compound classes, such as n-alkanes, hopanes and steranes, PAH, fatty alcohols, fatty acids and fatty acids selts, were determined by GC-FID and GC-MS analysis. The concentrations ranged between 56–215 ng/m3 for n-alkanes, 10–52 ng/m3 for PAH, 2–31 ng/m3 for fatty alcohols, 13–279 ng/m3 for fatty acids and 24–220 ng/m3 for fatty acid salts. -Oxocarboxylic acids were also determined as salts, indicating the atmospheric oxidation of unsaturated fatty acids.  相似文献   

6.
Nuno Ratola  Damià Barceló 《Talanta》2009,77(3):1120-1128
Two different extraction strategies (microwave-assisted extraction (MAE) and ultrasonic extraction (USE)) were tested in the extraction of the 16 US Environmental Protection Agency (EPA) polycyclic aromatic hydrocarbons (PAHs) from pine trees. Extraction of needles and bark from two pine species common in the Iberian Peninsula (Pinus pinaster Ait. and Pinus pinea L.) was optimized using two amounts of sample (1 g and 5 g) and two PAHs spiking levels (20 ng/g and 100 ng/g). In all cases, the clean-up procedure following extraction consisted in solid-phase extraction (SPE) with alumina cartridges. Quantification was done by gas chromatography (GC) with mass spectrometry (MS), using five deuterated PAH surrogate standards as internal standards. Limits of detection were globally below 0.2 ng/g. The method was robust for the matrices studied regardless of the extraction procedures. Recovery values between 70 and 130% were reached in most cases, except for high molecular weight PAHs (indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene and benzo[ghi]perylene). A field study with naturally contaminated samples from eight sites (four in Portugal and four in Catalonia, Spain) showed that needles are more suitable biomonitors for PAHs, yielding concentrations from 2 to 17 times higher than those found in bark. The levels varied according to the sampling site, with the sum of the individual PAH concentrations between 213 and 1773 ng/g (dry weight). Phenanthrene was the most abundant PAH, followed by fluoranthene, naphthalene and pyrene.  相似文献   

7.
The burning velocities of fluoromethane (HFC-41), 1,2-difluoroethane (HFC-152), fluoroethane (HFC-161) and ethane were measured by the spherical-vessel (SV) method at room temperature and at initial pressures of 80-107 kPa over a wide range of HFC/air equivalence ratios (?). The burning velocities were determined from the measured pressure increases by application of a spherical flame model. Schlieren photography was used to directly observe flame propagation behavior in a cylindrical vessel equipped with optical windows. The time evolution of the flame radii derived from the pressure increases agreed with the time evolution observed with the Schlieren technique. The maximum burning velocities of HFC-41, HFC-152, HFC-161 and ethane were 28.3 cm s−1 at ? = 1.01, 30.1 cm s−1 at ? = 1.07, 38.3 cm s−1 at ? = 1.07 and 40.9 cm s−1 at ? = 1.05, respectively. The maximum burning velocities for the HFCs, including previously reported C1 and C2 fluoroalkanes, decreased with increasing F-substitution rate (the ratio of the number of F atoms to the sum of the number of H and F atoms). The concentrations of chemical species in the flames were investigated by means of an equilibrium calculation, and the results suggested that the burning velocity was correlated with the concentrations of H and OH radicals that were not deactivated by F radicals in the flame. The results also suggested that the burning velocities were linearly related to the heats of combustion of the C1 and C2 fluoroalkanes.  相似文献   

8.
A simple and sensitive automated method, consisting of in-tube solid-phase microextraction (SPME) coupled with high-performance liquid chromatography-fluorescence detection (HPLC-FLD), was developed for the determination of 15 polycyclic aromatic hydrocarbons (PAHs) in food samples. PAHs were separated within 15 min by HPLC using a Zorbax Eclipse PAH column with a water/acetonitrile gradient elution program as the mobile phase. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 μL of sample using a CP-Sil 19CB capillary column as an extraction device. Low- and high-molecular weight PAHs were extracted effectively onto the capillary coating from 5% and 30% methanol solutions, respectively. The extracted PAHs were readily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME HPLC-FLD method, good linearity of the calibration curve (r > 0.9972) was obtained in the concentration range of 0.05–2.0 ng/mL, and the detection limits (S/N = 3) of PAHs were 0.32–4.63 pg/mL. The in-tube SPME method showed 18–47 fold higher sensitivity than the direct injection method. The intra-day and inter-day precision (relative standard deviations) for a 1 ng/mL PAH mixture were below 5.1% and 7.6% (n = 5), respectively. This method was applied successfully to the analysis of tea products and dried food samples without interference peaks, and the recoveries of PAHs spiked into the tea samples were >70%. Low-molecular weight PAHs such as naphthalene and pyrene were detected in many foods, and carcinogenic benzo[a]pyrene, at relatively high concentrations, was also detected in some black tea samples. This method was also utilized to assess the release of PAHs from tea leaves into the liquor.  相似文献   

9.
This paper reports the results of a new experimental study on the capacity of an ionic liquid to extract a sulfur compound from its mixtures with aliphatic hydrocarbons. With this aim, liquid + liquid equilibrium data of ternary systems containing 1-methyl-3-octyl-imidazolium bis(trifluoromethylsulfonyl)-imide ([C8mim][NTf2]), thiophene and n-hexane, n-heptane or n-hexadecane have been determined at T = 298.15 K. All systems showed high solubility of thiophene in the ionic liquid and low solubility of the ionic liquid in the n-alkane. The solute distribution coefficient decreases and the selectivity increases as the chain length of n-alkane increases. Both parameters are higher than unity in most of the cases. The experimental results have been correlated using NRTL activity coefficient model, and large deviations from experimental data have been found at high concentrations of thiophene with the heaviest hydrocarbons.  相似文献   

10.
Direct thermal desorption and in-situ derivatization thermal desorption methods in conjunction with gas chromatography time-of-flight mass spectrometry have been characterized and evaluated for analysis of trace components from filters loaded with ambient particulate matter (PM). The limits of quantification were in the range of 7–24 pg for n-alkanes, 20 pg for hopanes, and 4–22 pg for polycyclic aromatic hydrocarbons (PAH). The limit of quantification was defined as the minimum amount of substance that conforms to the minimum distinguishable signal plus 9 times the standard deviation of this background signal from PM-loaded filters. The method has been successfully applied to low-volume samples from ambient PM collected with stationary and personal samplers. Stationary samples were collected in winter 2008 and 2010 in Augsburg, Germany. Sample aliquots of 0.2-0.3 m3 from stationary sampling were analyzed. High diurnal variation in concentration and source contribution was found especially during periods with low wind speed and low mixing layer height. High contributions of solid fuel combustion (wood and coal) were found in evening and nighttime samples, leading to peak PAH concentrations at midnight more than 10 times higher than at noon. Finally, the method was applied to samples collected by means of a personal sampler, i.e. a micro aethalometer, in Xi’an, China. Quantitative data on n-alkanes, hopanes, and PAH were obtained from sample volumes of 17 and 24 l. The impact of different sources such as vehicular and biogenic emissions could be distinguished.  相似文献   

11.
(Liquid + liquid) equilibrium data are presented for four ternary systems of an alkane, or aromatic compound and ethyl(2-hydroxyethyl)dimethylammonium bis{(trifluomethyl)sulfonyl}imide (C2NTf2) at 298.15 K: [hexane + benzene + C2NTf2], [hexane + p-xylene + C2NTf2], and [hexane, or octane + m-xylene + C2NTf2]. The separation of aromatic hydrocarbons (benzene, or p-xylene, or m-xylene) from aliphatic hydrocarbons (hexane, or octane) is investigated by extraction with the ammonium ionic liquid. Selectivities and distribution ratios are discussed for these mixtures at constant temperature. The data were analysed and compared to those previously reported for other ionic liquids and especially for the system {hexane + benzene + [EMIM][NTf2]}. The nonrandom two liquid NRTL model was successfully used to correlate the experimental tie-lines and to calculate the phase compositions of the ternary systems.  相似文献   

12.
Subcritical water extraction of organic matter containing sedimentary rocks at 300 °C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300 °C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300 °C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300 °C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300 °C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable replacement for conventional solvent extraction of sedimentary rocks, but can also be used for any organic matter containing mineral matrix, including soils and recent sediments, and has the added benefit of tailored extraction for analytes of specific polarities.  相似文献   

13.
A focused-microwave assisted extraction method using aggregates of the ionic liquid (IL) 1-hexadecyl-3-butylimidazolium bromide (HDBIm-Br) followed by high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection and single-channel fluorescence detection (FLD) has been developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in toasted cereals (“gofios”) of different nature (wheat, barley, rye, and maize corn) from the Canary Islands, Spain. The optimized HPLC-UV-vis/single-channel FLD method takes 40 min for the chromatographic run with limits of detection varying between 0.02 and 4.01 ng mL−1 for the fluorescent PAHs from the European Union (EU) priority list in foods, and 20.5 ng mL−1 for the non-fluorescent PAH cyclopenta[c,d]pyrene (CPP). The optimized microwave step presented extractions recoveries ranging from 70.1 to 109% and precision values lower than 12.6% (as relative standard deviation), using an extraction time of 14 min. The extraction method also utilizes low amounts of sample (0.1 g), and low amounts of IL (77 mg), avoiding completely the use of organic solvents.  相似文献   

14.
Summary The hydrocarbon composition of the particle and gas phases in the urban atmosphere has been studied by filtration and parallel adsorption on active charcoal and polyurethane foam (PUF). Gas chromatography (GC) and GC coupled to mass spectrometry (GC-MS) have been used for the analysis of the organic matter extracts obtained with each system. In the case of the particle and PUF samples these extracts were fractionated into aliphatic and aromatic compounds. This approach has allowed to identify up to 247 hydrocarbon molecules showing that C0–C5 alkylbenzenes are the major compounds in the charcoal extracts whereas C14–C23 n-alkanes, C0–C4 alkylnaphthalenes, C0–C4 alkylbiphenyls and C3–C5 alkylbenzenes are those predominantly found in the PUF materials. The particles essentially contain C17–C38 n-alkanes and parent polycyclic aromatic hydrocarbons (PAH). These qualitative differences are paralleled by a progressive concentration decrease from the more to the less volatile hydrocarbons. Thus, the total charcoal extracts average 80 g/m3, the PUF compounds represent 4 /m3 and the particle hydrocarbons 0.7 g/m3. These latter airborne materials are essentially composed of petrogenic residues 0.6 g/m3 (aliphatic fraction) whereas the pyrolytic PAH only involve 0.08 g/m3.  相似文献   

15.
This paper describes a new, efficient and versatile method for the sampling and preconcentration of PAH in environmental water matrices using special hybrid magnetic carbon nanotubes. These N-doped amphiphilic CNT can be easily dispersed in any aqueous matrix due to the N containing hydrophilic part and at the same time show high efficiency for the adsorption of different PAH contaminants due to the very hydrophobic surface. After adsorption, the CNT can be easily removed from the medium by a simple magnetic separation. GC/MS analyses showed that the CNT method is more efficient than the use of polydimethylsiloxane (PDMS) with much lower solvent consumption, technical simplicity and time, showing good linearity (range 0.18–80.00 μg L−1) and determination coefficient (R2 > 0.9810). The limit of detection ranged from 0.05 to 0.42 μg L−1 with limit of quantification from 0.18 to 1.40 μg L−1. Recovery (n = 9) ranged from 80.50 ± 10 to 105.40 ± 12%. Intraday precision (RSD, n = 9) ranged from 1.91 to 9.01%, whereas inter day precision (RSD, n = 9) ranged from 7.02 to 17.94%. The method was applied to the analyses of PAH in four lake water samples collected in Belo Horizonte City, Brazil.  相似文献   

16.
Linear alkylbenzene sulphonates (LAS) and polycyclic aromatics hydrocarbons (PAH) are organic pollutants in sewage sludge which will have to be monitored in the European Union according to the third draft of a future sludge directive. In the present work, an analytical method for the simultaneous extraction of 4 LAS homologues and 16 PAH congeners in sludge from wastewater treatment plants is proposed to improve the routine analysis of these compounds in sludge samples. The method involves sonication assisted extraction, clean-up and preconcentration by solid phase extraction, and determination by high-performance liquid chromatography with ultraviolet diode array (UV-DAD) and fluorescence (FLD) detectors. Average recoveries were 87% for LAS and 76% for PAH, with relative standard deviations below 13%. Limits of quantification of LAS and PAH were in the range from 13 to 56 mg kg−1 and from 80 to 650 μg kg−1, respectively, when using UV-DAD. Limits of quantification of LAS and PAH were in the range 5-18 mg kg−1 and from 1 to 150 μg kg−1, respectively, when using FLD. The applicability of the proposed method was evaluated by the determination of these compounds in sludge from wastewater treatment plants in Seville (South Spain).  相似文献   

17.
In this work, ZnO/PPy nanocomposite coating was fabricated on stainless steel and evaluated as a novel headspace solid phase microextraction (HS-SPME) fiber coating for extraction of ultra-trace amounts of environmental pollutants; namely, aliphatic hydrocarbons in water and soil samples. The ZnO/PPy nanocomposite were prepared by a two-step process including the electrochemical deposition of PPy on the surface of stainless steel in the first step, and the synthesis of ZnO nanorods by hydrothermal process in the pores of PPy matrix in the second step. Porous structure together with ZnO nanorods with the average diameter of 70 nm were observed on the surface by using scanning electron microscopy (SEM). The effective parameters on HS-SPME of hydrocarbons (i.e., extraction temperature, extraction time, desorption temperature, desorption time, salt concentration, and stirring rate) were investigated and optimized by one-variable-at-a-time method. Under optimized conditions (extraction temperature, 65 ± 1 °C; extraction time, 15 min; desorption temperature, 250 °C; desorption time, 3 min; salt concentration, 10% w/v; and stirring rate, 1200 rpm), the limits of detection (LODs) were found in the range of 0.08–0.5 μg L−1, whereas the repeatability and fiber-to-fiber reproducibility were in the range 5.4–7.6% and 8.6–10.4%, respectively. Also, the accuracies obtained for the spiked n-alkanes were in the range of 85–108%; indicating the absence of matrix effects in the proposed HS-SPME method. The results obtained in this work suggest that ZnO/PPy can be promising coating materials for future applications of SPME and related sample preparation techniques.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) were measured in samples collected from July to December of 2003, in Campo Grande — MS (Brazil), on three different sites: Ary Coelho Square (AC), Indigenous Nations' Park (NI) and Indubrasil (IB). Particle-bound PAHs were collected on quartz filters and gas-phase PAHs on glass cartridges using a polyurethane foam sampler, respectively. The substances of interest were extracted with a dichloromethane/methanol mixture (9:1 v/v) and subjected to gas chromatography — ion trap tandem mass spectrometry (GC-MS/MS). The concentration values of PAHs in AC varied from 0.03 to 26.28 μg m− 3 and the average value for the sum of 16 PAHs was 51.35 μg m− 3 (range: 2.98-79.91 μg m− 3). On the NI site were obtained values of PAHs with concentrations of between 0.02 and 13.84 μg m− 3 and an average value for the total of 16 PAHs was equal to 46.76 μg m− 3 (range: 21.20-85.32 μg m− 3). The PAH concentrations obtained in the IB sampling site varied from 0.02 to 16.74 μg m− 3, with the obtained medium value, for the total of 16 PAHs, equal to 42.79 μg m− 3 (range: 26.53-58.49 μg m− 3). Strong positive correlations were found among samples (r: 0.70 to 0.97, p < 0.005) in 39% of the associations and non-significant correlations were observed among PAHs, except for Flu-Acy, BaA-Phe, Chry-BaA, BkF-Naph, BaP-Phe and BghiP-Naph that were poorly correlated. The statistical analysis of the data showed high similarity among samples on the three sites. The diagnostic ratios indicated the vehicular traffic (diesel and gasoline engines) and the biomass combustion, as major PAH sources in the three sampling sites.  相似文献   

19.
Summary The aim of this work is to establish the best conditions for concentration and purification steps in the trace analysis of aliphatic and polycyclic aromatic hydrocarbons (PAH) from atmospheric particulate matter by gas chromatography-flame ionisation detection (GC-FID) and high performance liquid chromatography with ultraviolet and fluorescence detection (HPLC-UV-FL). The best results for the more volatile compound were obtained with a combination of rotary evaporation and a stream of nitrogen (near to 100% for aliphatic hydrocarbons and from 70 to 105% for PAH). Two types of solid phase extraction (SPE)cartridges (Supelclean tm LC-Silica SPE tubes and Sep-Pak? Plus silica cartridges) and glass column were examined for the purification and fractionation step. Blank chromatograms of both types of cartridges analysed by GC-FID made this study difficult, because a PSS (programmed split-splitless) injector was employed thereby increasing the sensitivity. This problem was not observed in the HPLC-UV-FL blank chromatograms of these cartridges. Glass columns filled with silica and alumina were chosen because no interference was found in the GC-FID blank chromatograms and the best recoveries in the fractionation of both aliphatic hydrocarbons and PAH were achieved. This is especially important when aliphatic hydrocarbons concentrations are lower than 1 μg mL−1. Finally, the selected conditions were applied to the analysis of hydrocarbons in real atmospheric particulate samples.  相似文献   

20.
The preparation of the biodegradable aliphatic polyester poly(propylene succinate) (PPSu) using 1,3-propanediol and succinic acid is presented. Its synthesis was performed by two-stage melt polycondensation in a glass batch reactor. The polyester was characterized by gel permeation chromatography, 1H NMR spectroscopy and differential scanning calorimetry (DSC). It has a number average molecular weight 6880 g/mol, peak temperature of melting at 44 °C for heating rate 20 °C/min and glass transition temperature at −36 °C. After melt quenching it can be made completely amorphous due to its low crystallization rate. According to thermogravimetric measurements, PPSu shows a very high thermal stability as its major decomposition rate is at 404 °C (heating rate 10 °C/min). This is very high compared with aliphatic polyesters and can be compared to the decomposition temperature of aromatic polyesters. TG and Differential TG (DTG) thermograms revealed that PPSu degradation takes place in two stages, the first being at low temperatures that corresponds to a very small mass loss of about 7%, the second at elevated temperatures being the main degradation stage. Both stages are attributed to different decomposition mechanisms as is verified from activation energy determined with isoconversional methods of Ozawa, Flyn, Wall and Friedman. The first mechanism that takes place at low temperatures is auto-catalysis with activation energy E = 157 kJ/mol while the second mechanism is a first-order reaction with E = 221 kJ/mol, as calculated by the fitting of experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号