首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We have studied a two-electron quantum dot molecule in a magnetic field. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate two lowest energy levels of the two-electron quantum dot molecule in a magnetic field. Our results show that the electron interactions are significant, as they can change the total spin of the two-electron ground state of the system by adjusting the magnetic field between S = 0 and S = 1. The energy difference AE between the lowest S = 0 and S = 1 states is shown as a function of the axial magnetic field. We found that the energy difference between the lowest S = 0 and S = 1 states in the strong-B S = 0 state varies linearly. Our results provide a possible realization for a qubit to be fabricated by current growth techniques.  相似文献   

2.
Low-lying states of a vertically coupled three-layer quantum-dot system are studied.Each layer contains one electron,and the tunnelling of electrons between layers is neglected.Effects of the interlayer separation d and the external magnetic field B are evaluated by numerical calculations.In the strong coupling case (i.e.d is small),as in a single dot,transitions of the angular momentum L of the true ground states occur when B increases, whereas in the weak coupling case the transition does not occur and L remains zero.Furthermore,it is found that the variation of d may also induce the L transition.As a result,a phase diagram of L of the true ground state is given in the d-B plane.  相似文献   

3.
We investigate four electrons confined in a coupled three-layer quantum dot, by the exact diagonalization method. A vertical magnetic field to the confinement plane is considered. The ground-state electronic structures and angular momentum transitions are investigated. We find that for four-electron Q Ds, the Series of the magic numbers in three-layer QDs are different from those in one-, and two-layer Q Ds. These are connected to the exchange and rotational symmetries of the systems.  相似文献   

4.
迟锋  李树深 《中国物理快报》2005,22(8):2035-2038
We investigate the spin polarized current through a quantum dot connected to ferromagnetic leads in the presence of a finite spin-dependent chemical potential. The effects of the spin polarization of the leads p and the external magnetic field B are studied. It is found that both the magnitude and the symmetry of the current are dependent on the spin polarization of the leads. When the two ferromagnetic leads are in parallel configuration, the spin polarization p has an insignificant effect on the spin current, and an accompanying charge current appears with the increase of p. When the leads are in antiparallel configuration, however, the effect of p is distinct. The charge current is always zero regardless of the variation of p in the absence of B. The peaks appearing in the pure spin current are greatly suppressed and become asymmetric as p is increased. The applied magnetic field B results in an accompanying charge current in both the parallel and antiparallel configurations of the leads. The characteristics of the currents are explained in terms of the density of states of the quantum dot.  相似文献   

5.
We investigate the effect of the position of the donor in quantum dots on the energy spectrum in the presence of a perpendicular magnetic field by using the method of few-body physics,As a function of the magnetic field,we find,when D^- centers are placed sufficiently off-center,discontinuous ground-state transitions which are similar to those found in many-electron parabolic quantum dots.Series of magic numbers of angular momentum which minimize the ground-state electron-electron interaction energy have been discovered.The dependence of the binding energy of the gound-state of the D^- center on the dot radius for a few values of the magnetic field strength is obtained and compared with other results.  相似文献   

6.
The influence of the electron-LO-phonon coupling on energy spectrum of the low -lying states of an exciton in parabolic quantum dots is investigated as a function of dot size.Calculations are made by using the method of few-body physics within the effective-mass approximation.A considerable decrease of the energy in the stronger confinement range is found for the low-lying states of an exction in quantum dots.Which results from the confinement of electron-phonon coupling.  相似文献   

7.
The single and a few coupled quantum dots are important for future quantum information sciences and their investigation is also a big challenge in physics. We investigate here the electronic and exciton states and their interaction with each other via micro photoluminescence. The luminescence for single and a few dots as well as a dot molecule of CdSe/ZnSe are measured with very high resolution, under liquid He temperature and magnetic fields and with different polarization of excitation laser. The observed sharp spectral lines are attributed to the atomlike transitions of exciton, trion, biexciton… in the investigated single QD or QD molecule. Band filling, Zeeman splitting, spin transition and their relaxation are observed and investigated'from the spectra and compared with those of same material in different dimensions, and compared with the primary calculation as well. In addition, quite a few new phenomena, which can not be understood based on our present model and knowledge, are also observed; and some very interesting problems are left for further investigation.  相似文献   

8.
We investigate the ground-state properties of a two-dimensional two-electron quantum dot with a Gaussian confining potential under the influence of perpendicular homogeneous magnetic field. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A ground-state behaviour (singlet→triplet state transitions) as a function of the strength of a magnetic field has been found. It is found that the dot radius R of the Gaussian potential is important for the ground-state transition and the feature of ground-state for the Gaussian potential quantum dot (QD), and the parabolic potential QDs are similar when R is larger. The larger the quantum dot radius, the smaller the magnetic field for the singlet-triplet transition of the ground-state of two interacting electrons in the Gaussian quantum dot.  相似文献   

9.
We study theoretically the essential properties of an exciton in vertically coupled Gaussian quantum dots in the presence of an external magnetic field. The ground state energy of a heavy-hole exciton is split into four energy levels due to the Zeeman effect. For the symmetrical system, the entanglement entropy of the exciton state can reach a value of 1. However, for a system with broken symmetry, it is close to zero. Our results are in good agreement with previous studies.  相似文献   

10.
The binding energy of an exciton in a wurtzite GaN/GaAlN strained cylindrical quantum dot is investigated theoretically.The strong built-in electric field due to the spontaneous and piezoelectric polarizations of a GaN/GaAlN quantum dot is included.Numerical calculations are performed using a variational procedure within the single band effective mass approximation.Valence-band anisotropy is included in our theoretical model by using different hole masses in different spatial directions.The exciton oscillator strength and the exciton lifetime for radiative recombination each as a function of dot radius have been computed.The result elucidates that the strong built-in electric field influences the oscillator strength and the recombination life time of the exciton.It is observed that the ground state exciton binding energy and the interband emission energy increase when the cylindrical quantum dot height or radius is decreased,and that the exciton binding energy,the oscillator strength and the radiative lifetime each as a function of structural parameters (height and radius) sensitively depend on the strong built-in electric field.The obtained results are useful for the design of some opto-photoelectronic devices.  相似文献   

11.
The energy spectra of low-lying states of an exciton in a single and a vertically coupled quantum dots arestudied under the influence of a perpendicularly applied magnetic field. Calculations are made by using the method ofnumerical diagonalization of the Hamiltonian within the effective-mass approximation. We also calculated the bindingenergy of the ground and the excited states of an exciton in a single quantum dot and that in a vertically coupledquantum dot as a function of the dot radius for different values of the distance and the magnetic field strength.  相似文献   

12.

The quasi-exact properties of an exciton are investigated theoretically in the presence of an external magnetic field using the effective-mass approach in GaAs parabolic quantum dot. The energy spectrum is obtained analytically as a function of the dot radius, interaction strength and magnetic field. It is established that, a steady bound state of an exciton in the ground state exists under the effect of a strong magnetic field; also I noticed that the exciton binding energy decreases by increasing both the radius of the dot and the magnetic field strength and the reduction becomes pronounced for larger dots. As expected, it has been found that the exciton total energy decreases with increasing the size of the dot and it enhances by increasing the magnetic field. It appears that the exciton total energy strongly depends on the magnetic field for dots with big size. The magnetic field effect on the exciton size also has been studied. It is shown that the increase in the magnetic field leads to a reduction in the exciton size; due to magnetic field confinement, while the size of an exciton reach its bulk limit as the dot size increases. Moreover, it is shown that, if the dot radius is sufficiently large the oscillator strength saturates and it becomes insensitive to the magnetic field while the increase in the magnetic field gradually weakened the oscillator strength. I have calculated the ground-state distribution for both the electron and the hole. It is found that the localization of the electron/hole increases in the presence of a magnetic field. Moreover, the ground-state optical-absorption intensity is investigated. Finally, the dependence of the lowest five states of an exciton on both the dot radius and the magnetic field are discussed.

  相似文献   

13.
In this paper, a negatively charged exciton trapped by a spherical parabolic quantum dot has been investigated. The energy spectra of low-lying states are calculated by means of matrix diagonalization. The important feature of the low-lying states of the negatively charged excitons in a spherical quantum dot is obtained via an analysis of the energy spectra.  相似文献   

14.
We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matrix. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.  相似文献   

15.
We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matrix. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.  相似文献   

16.
The influence of the electron-LO-phonon coupling on energy spectrum of the low-lying states ofan exciton inparabolic quantum dots is investigated as a function of dot size. Calculations are made by using the method of few-bodyphysics within the effective-mass approximation. A considerable decrease of the energy in the stronger confinement rangeis found for the low-lying states of an exciton in quantum dots, which results from the confinement of electron-phononcoupling.  相似文献   

17.
We investigated theoretically the influence of strain on the exciton in both single and three vertically coupled self-assembled quantum dot systems in the presence of a perpendicular magnetic field. For the single disk, we find that the heavy-hole exciton is the ground state, while for the system of three stacked disks, the light hole state was found to be lower in energy. Results for the diamagnetic shift were compared with experimental results.  相似文献   

18.
The energy levels structure of two interacting electrons in a parabolic quantum dot under an external magnetic field of arbitrary strength is studied via the asymptotic iteration method. The method gives accurate results over the full range of quantum dot parameters. A crossings between spin-singlet and spin-triplet ground states energies as a function of the magnetic field is predicted.  相似文献   

19.
Making use of the method of few-body physics, the energy spectrum of a four-electron system consisting in a vertically coupled double-layer quantum dot as a function of the strength ofa magnetic field is investigated. Discontinuous ground-state transitions induced by an external magnetic field are shown. We find that, in the strong coupling case, the ground-state transitions depend not only on the external magnetic field B but also on the distance d between double-layer quantum dots. However, in the case of weak coupling, the ground-state transitions occur in the new sequence of the values of the magic angular momentum. Hence, the interlayer separation d and electron-electron interaction strongly affect the ground state of the coupled quantum dots.  相似文献   

20.
半导体量子点中弱耦合激子的性质   总被引:4,自引:2,他引:2       下载免费PDF全文
李志新  肖景林 《发光学报》2006,27(4):457-462
研究了抛物型半导体量子点中弱耦合激子的性质,在有效质量近似下,采用线性组合算符和幺正变换的方法,导出了抛物型半导体量子点中激子的基态能量。讨论了量子点半径和受限强度对半导体量子点中弱耦合激子的基态能量的影响。以GaAs半导体为例进行了数值计算,结果表明:在弱耦合情况下,重空穴激子和轻空穴激子的基态能量随量子点半径的减小而增大,随受限强度ω0的增强而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号