首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Adsorption isotherms of metamitron on model soil colloidal components: kaolinite, illite, montmorillonite, iron oxide and humic acid, and their binary associations were obtained using a batch equilibration procedure. Sorption parameters, Kf and nf, were calculated by fitting the sorption data to the Freundlich equation and results obtained for binary associations were compared with those obtained for the individual model components. The sorption efficiency of the humic acids and their binary associations was measured as Koc. The adsorption behaviour of the < 2 μm fraction of two soils from Southern Spain was also studied as natural particulate matter. Montmorillonite and humic acids were found to be the most important components responsible for metamitron retention by the model adsorbents studied. On the contrary, metamitron showed little interaction with kaolinite, illite or iron oxide. These individual adsorption behaviours were reproduced in the montmorillonite-iron oxide-humic acid binary systems, but with differences suggesting changes on the surface properties upon association. Differences in Koc values of isolated humic acids and their associations indicate that the interaction transforms the humic acid surfaces and suggest different types of bonding between colloids and metamitron. The results obtained with model adsorbents and their associations were in agreement with the highest adsorption of metamitron found for the natural clay fraction of two soils which displayed the largest adsorption in that with the highest content in montmorillonite and organic carbon. The importance of organic matter and montmorillonite in metamitron adsorption by colloidal components was also shown by the decrease in Kf and the increase in Koc observed after removal of organic matter from the soil clay fraction with the highest organic carbon content.  相似文献   

2.
The adsorption of isoproturon and two model compounds, N,N-dimethylurea and4-isopropylaniline, on clay minerals (bentonite,montmorillonite and kaolinite), organic matter (humic acid) and soil (with and without organic matter) has been studied using FT-infrared spectroscopy (IR), thermogravimetric analysis (TGA), high pressure liquid chromatography (HPLC) and X-ray diffraction (XRD).N,N-dimethylurea interacted with bentonite and montmorillonite by the coordination of the carbonyl group, directly or indirectly through water molecules, with exchangeable cations. Adsorption on humic acid was due to hydrogen bonding with the active sites of the adsorbent. The amino group ofN,N-dimethylurea appears tobe relatively inactive during adsorption. The mechanisms involved in the adsorption of 4-isopropylaniline were hydrogen bonding and protonation. No adsorption of 4-isopropylaniline was observed on kaolinite. The investigation of isoproturon suggested that both the carbonyl and amino groups of isoproturon were involved in interactions with the active sites of the adsorbents. Both the clay minerals and organic matter of soil contribute to the adsorption of organic compounds on soil but the clay minerals bentonite and montmorillonite play a major role in their adsorption on soil.  相似文献   

3.
The adsorption of atrazine and two model compounds,2-chloropyrimidine and 3-chloropyridine on clay minerals(bentonite, montmorillonite and kaolinite), organic matter (humic acid) and soil (with and without organic matter) has beenstudied using FT-infrared spectroscopy (IR), thermogravimetric analysis (TGA), high pressureliquid chromatography (HPLC) and X-ray diffraction (XRD).3-Chloropyridine, 2-chloropyrimidine and atrazine were adsorbedthrough hydrogen bonding on bentonite, montmorillonite, humic acid and soil. In addition tohydrogen bonding, protonation of 3-chloropyridine and atrazine was also observed.In the adsorption of 2-chloropyrimidine on bentonite and montmorillonitean ion exchange mechanism also occurred. No adsorption of 3-chloropyridine or 2-chloropyrimidine wasobserved on the kaolinite clay mineral.Both the clay minerals and organic matter of soil contribute tothe adsorption of organic compounds on soil but the clay minerals bentonite and montmorilloniteplay a major role in their adsorption on soil.  相似文献   

4.
The adsorption of two pesticides (2,4-phenoxy acetic acid (2,4D) and thiabendazol) on silica, alumina, kaolin and montmorillonite is studied from adsorption isotherms and enthalpies. 2,4D is not adsorbed by silica, kaolinite and montmorillonite even in the presence of 0.01 mol l?1 divalent cations. On alumina, the energy of adsorption is comparable with that of the formation of an acid-base complex. Thiabendazol can be adsorbed on silica and clays from an ethanol solution. Most adsorption isotherms are of the Langmuir type and correspond to roughly constant adsorption enthalpies as a function of coverage except for kaolin where adsorption on both lateral and basal faces can be involved. Adsorption after introducing humic acids to the system was also studied for kaolin.  相似文献   

5.
Understanding the formation and breakup of humic acids and clays agglomerates is a difficult challenge owing to their complex nature. Thus, to progress in the study of the stability of such systems, attempts were made to replace the humic acid/kaolinite natural system by the polyacrylic acid/aluminium oxide synthetic system. Since the present investigation was dedicated to determine some characteristics of acidic soils which contain traces of aluminium ions, these ions were added to the adsorbent/polyacid systems as trace constituents. Initial and short-term phenomena related to the adsorption of humic and polyacrylic acids on aluminium oxide and kaolinite clay have been presented elsewhere. Here we present long-term phenomena regarding the formation and cohesion of oxide and clay aggregates formed in the presence of polyacrylic and humic acids, respectively. The results of electrophoretic mobility measurements demonstrated the amphipathic character of polymeric layers adsorbed on aluminium oxide and the amphoteric character of humic acid layers adsorbed on kaolinite. The long-term stability of the two colloidal systems was determined to evolve similarly despite the existence of the these typical characteristics. Received: 24 July 2000 Accepted: 20 December 2000  相似文献   

6.
Distribution of trace amount of Eu(III), or Am(III), in the aqueous/solid system containing humic acid and kaolinite, or montmorillonite, was studied by batch experiments. Humic acid was also adsorbed on the clay minerals and its adsorption isotherm can be regarded as a Langmuir type. It is shown that Eu(III), or Am(III), exists as humate complex either in the aqueous or on solid phase in the system including kaolinite, or montmorillonite. These results suggest that the organic-inorganic complex like clay minerals coated with humic substances is important as metal reservoir in the environment.  相似文献   

7.
The adsorption of extracellular polymeric substances (EPS) from Bacillus subtilis on montmorillonite, kaolinite and goethite was investigated as a function of pH and ionic strength using batch studies coupled with Fourier transform infrared (FTIR) spectroscopy. The adsorption isotherms of EPS on minerals conformed to the Langmuir equation. The amount of EPS-C and -N adsorbed followed the sequence of montmorillonite>goethite>kaolinite. However, EPS-P adsorption was in the order of goethite>montmorillonite>kaolinite. A marked decrease in the mass fraction of EPS adsorption on minerals was observed with the increase of final pH from 3.1 to 8.3. Calcium ion was more efficient than sodium ion in promoting EPS adsorption on minerals. At various pH values and ionic strength, the mass fraction of EPS-N was higher than those of EPS-C and -P on montmorillonite and kaolinite, while the mass fraction of EPS-P was the highest on goethite. These results suggest that proteinaceous constituents were adsorbed preferentially on montmorillonite and kaolinite, and phosphorylated macromolecules were absorbed preferentially on goethite. Adsorption of EPS on clay minerals resulted in obvious shifts of infrared absorption bands of adsorbed water molecules, showing the importance of hydrogen bonding in EPS adsorption. The highest K values in equilibrium adsorption and FTIR are consistent with ligand exchange of EPS phosphate groups for goethite surface. The information obtained is of fundamental significance for understanding interfacial reactions between microorganisms and minerals.  相似文献   

8.
Ab initio molecular dynamics (MD) and relativistic density functional NMR methods were applied to calculate the one‐bond Hg? C NMR indirect nuclear spin–spin coupling constants (J) of [Hg(CN)2] and [CH3HgCl] in solution. The MD averages were obtained as J(199Hg? 13C)=3200 and 1575 Hz, respectively. The experimental Hg? C spin–spin coupling constants of [Hg(CN)2] in methanol and [CH3HgCl] in DMSO are 3143 and 1674 Hz, respectively. To deal with solvent effects in the calculations, finite “droplet” models of the two systems were set up. Solvent effects in both systems lead to a strong increase of the Hg? C coupling constant. From a relativistic natural localized molecular orbital (NLMO) analysis, it was found that the degree of delocalization of the Hg 5dσ nonbonding orbital and of the Hg? C bonding orbital between the two coupled atoms, the nature of the trans Hg? C/Cl bonding orbital, and the s character of these orbitals, exhibit trends upon solvation of the complexes that, when combined, lead to the strong increase of J(Hg? C).  相似文献   

9.
In this paper the adsorption of polyacrylic acid (MW=5000) on the hydrophobic mercury surface and on the hydrophilic -Al2O3 surface at pH=3–4 in 0.55 M sodium chloride solution was investigated. Measurements of change of the double layer capacitance by phase selective a.c. voltammetry were used for determination of the adsorption of polyacrylic acid on the mercury electrode. The same method was used for the determination of the polyacrylic acid remaining in the solution after the adsorption on hydrophilic particles (-Al2O3 particles). The results obtained for adsorption of polyacrylic acid were compared to the results of the adsorption of humic substance of similar molecular weight under similar experimental conditions. The study has shown that polyacrylic acid in acidic solution is strongly adsorbed on the mercury surface, which is comparable to the adsorption of humic substance on the mercury surface. At the same time, the adsorption/deposition of polyacrylic acid on the -Al2O3 surface is weaker compared to humic acid, indicating at a smaller degree of interaction of polyacrylic acid with aluminium ions and with hydrophilic surface.  相似文献   

10.
Radiotracer method has been used for investigation of the adsorption and desorption of traces of radium on kaolinite and montmorillonite under conditions similar to those prevailing in waste and surface waters. It has been found that adsorption depends on the pH and ionic strength of the solution, and the character of these dependences is different for kaolinite and montmorillonite. Sulfates at concentration 60 mg·l–1 have negligible effect on the adsorption. Montmorillonite represents better adsorbent for radium than kaolinite, but both minerals may significantly affect the form and migration of radium in surface waters, if present as (major) components of freshwater sediments. Radium can be quantitatively desorbed by 1M HCl from kaolinite but not from montmorillonite. The desorption by 0.1M NaCl is generally lower and depends on the pH during the preliminary adsorption. Mechanisms of radium adsorption on both minerals and the character of the adsorption sites are discussed.  相似文献   

11.
煤燃烧中的汞转化模型和数值模拟   总被引:2,自引:0,他引:2  
煤燃烧中汞高温下以单质形式存在,在烟道里随着温度降低,单质汞部分转化为二价汞,并再有部分汞吸附在灰渣中而被除尘设备收集,减少了环境的汞污染。针对煤燃烧汞的转化过程,用动力学模型和吸附模型结合来描述汞的转化机理,并用数值模拟方法研究了煤中氯的质量分数、烟气降温速率、烟气停留时间等因素的影响。结果表明,煤中氯的质量分数为0.08×10-6以上,烟气停留6s以上时,可以使汞的吸附率达到40%以上。对汞转化模型,用一组580MJ/h燃烧系统150℃烟道温度数据进行了验证,结果证实试验数据与计算数据能较好相符,模型具有一定的可靠性。  相似文献   

12.
Changes that occur in the surface properties and porous structure of montmorillonite upon the substitution of its exchange cations by polyhydroxyaluminum cations are studied. Preliminary thermovacuum treatment noticeably affects the adsorption properties of polyhydroxyaluminum montmorillonite with respect to methanol. The dependences of the adsorption heat on the amount of adsorbed methanol are established based on a set of isosteres of CH3OH adsorption on dehydrated sodium and modified montmorillonites measured in a wide temperature range.  相似文献   

13.
The HPLC-ICP-MS coupling technique is able to separate and detect methyl, ethyl and inorganic mercury isotopes specifically. An identification of ethyl mercury(+) is not possible when the widely used sodium tetraethylborate derivatisation method in combination with GC-AFS/AAS or ICP-MS techniques is performed because it contains ethyl groups.An unidentified compound with the same retention time as ethyl mercury was found in the HPLC chromatograms of industrial sewage samples and humic-rich soils of microcosm experiments after applying water vapour distillation. We also observed such unidentified peaks in samples of heavily contaminated sites in Eastern Germany, separated by HPLC fractionation only. In the experiments described, different mercury sulfur adducts were synthesised and tested for their retention times in the HPLC-ICP-MS system. It was found that the compound CH3–S–Hg+ showed the same retention time as the ethyl mercury standard. It is therefore possible that ethyl mercury detected in chromatography by comparison of the retention time could also be due to an adduct of a sulfur compound and a mercury species. CH3–S–Hg+ should be tested in other chromatographic mercury speciation methods for this effect.This work can also be regarded as a contribution to the discussion of artificially occurring methyl mercury in sediments during sample preparation.  相似文献   

14.
A simple cold-tube atomic absorption method with a silver-mercury amalgam trap and potassium permanganate as oxidizing agent is described for the determination of total mercury in tissue homogenates. Results are presented for animals fed inorganic (HgCl2) and organic (CH3HgOH) mercury orally at a level of 1 mg Hg kg?1. Data are presented which compare potassium permanganate oxidation of tissue homogenates with whole tissue analysed by cold-tube atomic absorption after digestion with acid, or by neutron activation. For kidney tissue there is good agreement between all three methods for animals fed inorganic and organic mercury. For liver, however, homogenization produced an average loss of about 50 % of the mercury in rats fed mercury(II) chloride. Factors such as adsorption of mercury on sample container walls, bacterial action on the tissue and inadvertent introduction of reducing agents which could reduce the mercury to its elemental state, are not significant. Despite the loss of mercury in the liver by homogenization, rank ordering of mercury values for potassium permanganate—homogenate versus direct neutron activation analyses was essentially the same.  相似文献   

15.
Conversion of mercury(II) and methylmercury(II) species dissolved in water into di(phenylethynyl)mercury and methyl(phenylethynyl) mercury takes place in satisfactory yield under alkaline conditions by stirring the aqueous solution with phenylacetylene at room temperature. Mercury speciation is simply obtained by HPLC analysis of the two organometallic species. The presence of heavy metals such as copper(II), zinc(II), cadmium(II) and lead(II) in concentrations 10000 times higher than mercury is tolerated, while little interference is displayed by humic acids and cysteine. Seawater samples can also be analysed following a properly adapted procedure.  相似文献   

16.
Spectroscopic and X-Ray Structural Investigations on Dichloromethyl Mercury Compounds Bis(dichloromethyl)mercury, Hg(CHCl2)2, and mixed alkyl compounds RHgCHCl2 (with R = CH3, C2H5) have been synthesized by known methods from CH2Cl2, lithium butanide and HgCl2, CH3HgCl or C2H5HgCl, respectively. The 1H-, 13C-NMR as well as the IR and Raman spectra of the liquid alkyls RHgCHCl2 and the high melting Hg(CHCl2)2 have been measured and assigned. According to the X-ray structure determination Hg(CHCl2)2 crystallizes in the monoclinic space group P21/c with 4 non-symmetric molecules per unit cell (R = 0.046).  相似文献   

17.
The applicability of a gas Chromatograph with a microwave emission spcctrometric detector (g.c.-m.e.s.) to the determination of trace amounts of volatile organo-mercury compounds in environmental samples is described. The high selectivity of the detector to mercury compounds allows the procedures to be drastically simplified. Thus, the total analysis time for methylmercury in fish is less than 15 min and more than 30 samples of CH3HgCl (benzene extracts) can be analyzed per hour. The detection limit is 0.5 pg for CH3HgCl (or C2H5HgCl) and 2 pg for (CH3)2Hg. The relative sensitivity for CH3HgCl in water samples is 1 ng l?1 and for fish samples is 1 ng g?1. Direct determinations of CH3HgCl and (CH3)2Hg in aqueous solutions arc also discussed.  相似文献   

18.
The effect of benzene carboxylic acids on the adsorption of Cd(II) (5×10−5 M) by goethite and kaolinite has been studied in 0.005 M NaNO3 at 25°C. The concentrations of phthalic (benzene-1,2-dicarboxylic acid), hemimellitic (1,2,3), trimellitic (1,2,4), trimesic (1,3,5), pyromellitic (1,2,4,5) and mellitic (1,2,3,4,5,6) acids varied from 2.5×10−5 to 1×10−3 M. Mellitic acid complexes Cd(II) strongly above about pH 3, but the other acids only at higher pH, phthalic acid forming the weakest complexes. Phthalic, trimesic and mellitic acids adsorbed strongly to goethite at pH 3, but adsorption decreased at higher pH; however, mellitic acid was still about 50% adsorbed at pH 9, by which the other two were almost entirely in solution. At 10−3 M all the acids enhanced the adsorption of Cd(II) to goethite, the higher members of the series being the most effective. The higher members of the series suppressed Cd(II) adsorption onto kaolinite, but phthalic and trimesic acids caused slight enhancement. The effects of mellitic acid on Cd(II) adsorption depended strongly on its concentration. The maximum enhancement of Cd(II) adsorption onto goethite was at 10−4 M. The greatest suppression of Cd(II) adsorption onto kaolinite was at 10−3 M, and at 2.5×10−5 M mellitic acid enhanced Cd(II) adsorption onto kaolinite at intermediate pH. The results are interpreted in terms of complexation between metal and ligand (acid), metal and substrate, ligand and substrate, and the formation of ternary surface complexes in which the ligand acts as a bridge between the metal and the surface.  相似文献   

19.
Mature starfish Leptasterias polaris, collected in the St Lawrence Estuary (eastern Canada), were exposed to two mercury species (HgCI2 and CH3HgCI) via injections into the coelomic fluid. In vivo effects of some complexing agents (glutathione, mercaptoethanol and EDTA) on the distribution of 203Hg-labelled species in starfish organs and tissues and their possible role in mercury transport through membranes were studied over a 24 h period. The excretion of ammonia and mercury was also measured. When injected alone, inorganic mercury and methylmercury [CH3Hg(II)] were distributed in all organs, with a preferential adsorption in gonads, pyloric caeca and stomach. Mercury excretion was very low under all conditions studied. Mercaptoethanol, a small thiol ligand, was very efficient in reducing both mercury species in the coelomic fluid and seems to have promoted translocation towards most organs of the starfish. Its action is attributed to the formation of small and neutral complexes, HgL2 and CH3HgL, which can diffuse through membranes preserving their integrity. Glutathione increased the translocation of CH3Hg(II) towards surrounding organs, but had no apparent effect on inorganic mercury. EDTA promoted the transport of inorganic mercury only. These results highlight (1) the particular interest of starfish to workers studying in vivo chemical complexation of mercury species, and (2) the potential role of complexing molecules in the biotransport of mercury species through living membranes.  相似文献   

20.
Equilibrium adsorption along with isothermal titration calorimetry (ITC), Fourier transform infrared spectra (FTIR) and scanning electron microscopy (SEM) techniques were employed to investigate the adsorption of Pseudomonas putida on kaolinite and montmorillonite. A higher affinity as well as larger amounts of adsorption of P. putida was found on kaolinite. The majority of sorbed bacterial cells (88.7%) could be released by water from montmorillonite, while only a small proportion (9.3%) of bacteria desorbed from kaolinite surface. More bacterial cells were observed to form aggregates with kaolinite, while fewer cells were within the larger bacteria–montmorillonite particles. The sorption of bacteria on kaolinite was enthalpically more favorable than that on montmorillonite. Based on our findings, it is proposed that the non-electrostatic forces other than electrostatic force play a more important role in bacterial adsorption by kaolinite and montmorillonite. Adsorption of bacteria on clay minerals resulted in obvious shifts of infrared absorption bands of water molecules, showing the importance of hydrogen bonding in bacteria–clay mineral adsorption. The enthalpies of −4.1 ± 2.1 × 10−8 and −2.5 ± 1.4 × 10−8 mJ cell−1 for the adsorption of bacteria on kaolinite and montmorillonite, respectively, at 25 °C and pH 7.0 were firstly reported in this paper. The enthalpy of bacteria–mineral adsorption was higher than that reported previously for bacteria–biomolecule interaction but lower than that of bacterial coaggregation. The bacteria–mineral adsorption enthalpies increased at higher temperature, suggesting that the enthalpy–entropy compensation mechanism could be involved in the adsorption of P. putida on clay minerals. Data obtained in this study would provide valuable information for a better understanding of the mechanisms of mineral–microorganism interactions in soil and associated environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号