首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The classical collocation method using Hermite polynomials is computationally expensive as the dimensionality of the problem increases. Because of the use of a C1‐continuous basis, the method generates two, four and eight unknowns per node for one, two and three‐dimensional problems, respectively. In this paper we propose a numerical strategy to reduce the nodal unknowns to a single degree of freedom at each node. The reduction of the unknowns is due to the use of Lagrangian polynomials to approximate the first‐order derivatives over the minimal compact stencil surrounding each node. For the solvability of the problem the reduction of the number of collocation equations is done by a nodal weighting strategy. We have applied the proposed approach to enhance the efficiency of a collocation‐based multiphase flow and transport simulator. Benchmark cases illustrate the higher performance of the new methodology when compared to classical Hermite collocation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
借鉴流形方法思想,引入广义节点的概念,对传统的无网格法进行了改进,建立了可具有任意高阶多项式插值函数的广义节点无网格方法。同时采用径向插值函数构造具有插值特性的逼近函数;采用配点法建立系统的离散方程。在阐述了这种方法基本原理的同时,针对线弹性力学问题给出了这种方法的数值计算列式。与传统无网格方法相比,这种方法更具有一般性;同时由于采用了配点法而不需要背景积分网格,所以可以认为这种方法是某种真正意义上的无网格法。当选取0阶广义节点位移插值函数时便可得到传统的无网格法;在不增加支持域内节点数目的条件下,通过选取高阶广义节点位移插值函数可以提高计算精度。最后通过算例分析,对0阶、1阶及2阶广义节点无网格法与现有的有关解答进行了对比,论证了其合理性。  相似文献   

3.
The interaction of arbitrarily distributed penny-shaped cracks in three-dimensional solids is analyzed in this paper. Using oblate spheroidal coordinates and displacement functions, an analytic method is developed in which the opening and the sliding displacements on each crack surface are taken as the basic unknown functions. The basic unknown functions can be expanded in series of Legendre polynomials with unknown coefficients. Based on superposition technique, a set of governing equations for the unknown coefficients are formulated from the traction free conditions on each crack surface. The boundary collocation procedure and the average method for crack-surface tractions are used for solving the governing equations. The solution can be obtained for quite closely located cracks. Numerical examples are given for several crack problems. By comparing the present results with other existing results, one can conclude that the present method provides a direct and efficient approach to deal with three-dimensional solids containing multiple cracks.The English text was polished by Keren Wang  相似文献   

4.
节点梯度光滑有限元配点法   总被引:2,自引:2,他引:0  
配点法构造简单、计算高效,但需要用到数值离散形函数的高阶梯度,而传统有限元形函数的梯度在单元边界处通常仅具有C0连续性,因此无法直接用于配点法分析.本文通过引入有限元形函数的光滑梯度,提出了节点梯度光滑有限元配点法.首先基于广义梯度光滑方法,定义了有限元形函数在节点处的一阶光滑梯度值,然后以有限元形函数为核函数构造了有...  相似文献   

5.
Ritz method is an effective way widely used to analyze the transverse bending ofthin rectangular plates.Its accuracy depends completely on the basis functions selected.This paper selects the superposition of sine series with polynomials as the basisfunctions of thin rectangular plates.The calculating formulae are not only simple andeasily programmed,but also have high accuracy.Finally,two numerical results aregiven and compared with those obtained by the classical method.  相似文献   

6.
傅卓佳  李明娟  习强  徐文志  刘庆国 《力学学报》2022,54(12):3352-3365
在过去几十年里, 尽管有限元等传统计算方法已被成功用于众多科学与工程领域, 但是其在数值模拟无限域波传播、大尺寸比结构、工程反演和移动边界问题时仍面临计算量大、计算效率低、网格生成困难等计算难题. 本文介绍一类基于物理信息依赖核函数的无网格配点法及其在上述难点问题中的应用. 物理信息依赖核函数配点法的关键在于构建能反映问题微分控制方程物理信息的基函数. 基于这些物理信息依赖核函数, 该方法无需/仅需少量配点对所求微分控制方程进行离散, 即可有效提高计算效率. 本文首先介绍满足常见齐次微分方程的基本解、调和函数、径向Trefftz函数以及T完备函数等典型物理信息依赖核函数. 接着依次介绍非齐次、非均质、非稳态以及隐式微分方程构造物理信息依赖核函数的方法. 随后, 根据所求问题特点, 选用全域配点或局部配点技术, 建立相应的物理信息依赖核函数配点法. 最后, 通过几个典型算例验证所提物理信息依赖核函数配点法的有效性.   相似文献   

7.
梅欢  曾忠  邱周华  姚丽萍  李亮 《计算力学学报》2012,29(5):641-645,674
r=0处的坐标奇异性是求解极坐标下Poisson-型方程的关键。本文提出一种极坐标系下基于Galerkin变分的Legendre谱元方法用于求解圆形区域内的Poisson-型方程,物理区域的径向和周向划分若干单元,计算单元均采用Legendre多项式展开;圆心所在单元的径向使用LGR(Legendre Gauss Radau)积分点,其他单元径向使用LGL(Legendre Gauss Lobatto)积分点,从而避免了极点处1/r坐标奇异性,周向单元均采用LGL积分点。利用区域分解技术,可以避免节点在极点附近聚集;最后求解了多个Dirichlet或Neumann边界条件下的Poisson-型方程算例。数值结果表明,谱元方法具有很高的精度。  相似文献   

8.
A collocated discrete least squares meshless method for the solution of the transient and steady‐state hyperbolic problems is presented in this paper. The method is based on minimizing the sum of the squared residuals of the governing differential equation at some points chosen in the problem domain as collocation points. The collocation points are generally different from nodal points, which are used to discretize the problem domain. A moving least squares method is employed to construct the shape functions at nodal points. The coefficient matrix is symmetric and positive definite even for non‐symmetric hyperbolic differential equations and can be solved efficiently with iterative methods. The proposed method is a truly meshless method and does not require numerical integration. Advantages of the collocation points are shown to be threefold: First, the collocation points are shown to be responsible for stabilizing the method in particular when problems with shocked solution are attempted. Second, the collocation points are also shown to improve the accuracy of the solution even for problems with smooth solutions. Third, the collocation points are shown to contribute to the efficiency of the method when solving steady‐state problems via faster convergence of the resulting algorithm. The ability of the method and in particular the effect of collocation points are tested against a series of one‐dimensional transient and steady‐state benchmark examples from the literature and the results are presented. A sensitivity analysis is also carried out to investigate the effect of the base polynomials on the accuracy and convergence characteristics of the method in solving steady‐state problems. The results show the ability of the proposed method to accurately solve difficult hyperbolic problems considered. The method is also shown to be particularly stable for problems with shocked solution due to the inherent stabilizing mechanism of the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In order to formulate the equations for the study here, the Fourier expansions upon the system of orthonormal polynomials areused.It may be considerably convenient to obtain the expressions of displacements as well as stresses directly from the solutions.Based on the principle of virtual work the equilibrium equations of various orders are formulated. In particular, the system of third-order is given in detail, thus providing the reference for accuracy analysis of lower-order equations. A theorem about the differentiation of Legendre series term by term is proved as the basis of mathematical analysis. Therefore the functions used are specified and the analysis rendered is no longer a formal one.The analysis will show that the Kirchhoff-Love’s theory is merely of the first-order and the theory which includes the transverse deformation but keeps the normal straight is essentially of the first order, too.  相似文献   

10.
采用径向基函数配点法分析考虑剪切效应的梁板弯曲问题,该方法利用径向基函数作为近似函数,基于配点法离散方程,通过最小二乘法求解。径向基函数配点法在离散和计算过程中不需要任何形式的网格划分,是一种真正的无网格法;径向基函数可以用一元函数来描述多元函数,存在明显的储存和运算简单的特点;而基于配点法求解不需要积分,提高了计算效率。分析考虑剪切效应的薄梁板问题时,传统的有限元法或无网格法求解均会存在剪切锁闭问题,而径向基函数在全域内存在无限连续性,能够准确地满足Kirchhoff约束条件,因此径向基函数配点法能够消除剪切锁闭现象,而且不会出现应力波动。该方法的优势在于,其不仅易于离散、精度高,而且具有指数收敛率,计算效率高。数值算例验证了上述结论和该方法的稳定性。  相似文献   

11.
The present paper is concerned with scattering of water waves from a vertical plate, modeled as an elastic plate, submerged in deep water covered with a thin uniform sheet of ice. The problem is formulated in terms of a hypersingular integral equation by a suitable application of Green's integral theorem in terms of difference of potential functions across the barrier. This integral equation is solved by a collocation method using a finite series involving Chebyshev polynomials. Reflection and transmission coefficients are obtained numerically and presented graphically for various values of the wave number and ice-cover parameter.  相似文献   

12.
A study is made of methods for solving linear viscoelastic problems on the basis of the Volterra concept — representation of irrational functions of integral operators as operator power series (analogues of Taylor series). It is pointed out that these series converge weakly. The results of development and substantiation of a new mathematical method for solution of the above problems are summarized. It is based on representing irrational functions of integral operators by operator continued fractions, which converge well. Solutions to certain linear viscoelastic problems for anisotropic bodies are given  相似文献   

13.
The problem of water wave scattering by a thin circular-arc-shaped plate submerged in infinitely deep water is investigated by linear theory. The circular-arc is not necessarily symmetric about the vertical through its center. The problem is formulated in terms of a hypersingular integral equation for a discontinuity of the potential function across the plate. The integral equation is solved approximately using a finite series involving Chebyshev polynomials of the second kind. The unknown constants in the finite series are determined numerically by using the collocation and the Galerkin methods. Both the methods ultimately produce very accurate numerical estimates for the reflection coefficient. The numerical results are depicted graphically against the wave number for a variety of configurations of the arc. Some results are compared with known results available in the literature and good agreement is achieved. The suitability of using a circular-arc-shaped plate as an element of a water wave lens has also been discussed on the basis of the present numerical results.  相似文献   

14.
 利用滑动最小二乘插值函数作为加权残值法的试函数,分析了 该试函数的拟合特性,对试函数中的基函数以及权函数的选取提出了 建议;采用最小二乘配点法求出试函数中的系数,进而可得到定解问 题的近似解;利用该试函数对薄板的挠曲、中厚板的弯曲两个例子进 行了数值计算,并与理论结果或其它数值结果进行对比,结果表明, 该试函数适用于多种边值问题,且精度高. 该法简化了选择试函数的 过程,尤其适用于工程中的各种数值计算.  相似文献   

15.
In many practical cases the usefulness of the Schwarz-Christoffel method to solve two-dimensional field problems (Laplace equation with Dirichlet boundary conditions) is limited by the presence of transcendental functions of complex variables. We demonstrate here a new technique whereby, in lieu of qualitative plots of equipotential surfaces and flux lines, field components and potential can be expressed as real power series of the coordinates (x, y). The convergence of these series is only limited by the proximity of singular points corresponding to the physical convex corners. By choosing suitable points on the boundary around which the series of expansion are developed, fringing field components in the regions of interest between the boundaries can be computed directly. In some cases the series converges rapidly and assumes a remarkably simple form.  相似文献   

16.
在冻土相变温度热传导机理基础上,应用冻土计算中水热输运过程成熟的通用物理模型,提出冻土活动层温度的一种全新的数值分析方法-谱方法.应用Chebyshev多项式作为基函数将温度解展开,在研究域(或单元)内采用伪谱Chebyshev逼近的谱方法.为了与谱方法的高精度相配合及提高时程积分解的稳定性,本文应用四阶Runger-Kutta法进行时程积分,变物性温度泛函-热导系数、热容量等考虑效应滞后的处理方法.本文提出冻土非线性问题数值计算拟谱分析的理论构架,其计算方法在冻土工程应用中具有一定的理论导向作用和较大的实用价值.  相似文献   

17.
A novel method to generate body‐fitted grids based on the direct solution for three scalar functions is derived. The solution for scalar variables ξ, η and ζ is obtained with a conventional finite volume method based on a physical space formulation. The grid is adapted or re‐zoned to eliminate the residual error between the current solution and the desired solution, by means of an implicit grid‐correction procedure. The scalar variables are re‐mapped and the process is reiterated until convergence is obtained. Calculations are performed for a variety of problems by assuming combined Dirichlet–Neumann and pure Dirichlet boundary conditions involving the use of transcendental control functions, as well as functions designed to effect grid control automatically on the basis of boundary values. The use of dimensional analysis to build stable exponential functions and other control functions is demonstrated. Automatic procedures are implemented: one based on a finite difference approximation to the Cristoffel terms assuming local‐boundary orthogonality, and another designed to procure boundary orthogonality. The performance of the new scheme is shown to be comparable with that of conventional inverse methods when calculations are performed on benchmark problems through the application of point‐by‐point and whole‐field solution schemes. Advantages and disadvantages of the present method are critically appraised. Copyright © 1999 National Research Council of Canada.  相似文献   

18.
In this paper a group of stress functions has been proposed for the calculation of a crack emanating from a hole with different shape (including circular, elliptical, rectangular, or rhombic hole) by boundary collocation method. The calculation results show that they coincide very well with the existing solutions by other methods for a circular or elliptical hole with a crack in an infinite plate. At the smae time, a series of results for different holes in a finite plate has also been obtained in this paper. The proposed functions and calculation procedure can be used for a plate of a crack emanating from an arbitrary hole.  相似文献   

19.
This paper presents a Fractional Derivative Approach for thermal analysis of disk brakes. In this research, the problem is idealized as one-dimensional. The formulation developed contains fractional semi integral and derivative expressions, which provide an easy approach to compute friction surface temperature and heat flux as functions of time. Given the heat flux, the formulation provides a means to compute the surface temperature, and given the surface temperature, it provides a means to compute surface heat flux. A least square method is presented to smooth out the temperature curve and eliminate/reduce the effect of statistical variations in temperature due to measurement errors. It is shown that the integer power series approach to consider simple polynomials for least square purposes can lead to significant error. In contrast, the polynomials considered here contain fractional power terms. The formulation is extended to account for convective heat loss from the side surfaces. Using a simulated experiment, it is also shown that the present formulation predicts accurate values for the surface heat flux. Results of this study compare well with analytical and experimental results.  相似文献   

20.
This paper presents a Fractional Derivative Approach for thermal analysis of disk brakes. In this research, the problem is idealized as one-dimensional. The formulation developed contains fractional semi integral and derivative expressions, which provide an easy approach to compute friction surface temperature and heat flux as functions of time. Given the heat flux, the formulation provides a means to compute the surface temperature, and given the surface temperature, it provides a means to compute surface heat flux. A least square method is presented to smooth out the temperature curve and eliminate/reduce the effect of statistical variations in temperature due to measurement errors. It is shown that the integer power series approach to consider simple polynomials for least square purposes can lead to significant error. In contrast, the polynomials considered here contain fractional power terms. The formulation is extended to account for convective heat loss from the side surfaces. Using a simulated experiment, it is also shown that the present formulation predicts accurate values for the surface heat flux. Results of this study compare well with analytical and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号