首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tang F  Zhang Q  Ren D  Nie Z  Liu Q  Yao S 《Journal of chromatography. A》2010,1217(28):4669-4674
Amino acid ionic liquids (AAILs) have received great attention due to their potentials in catalysis and separations. In this work, functional AAILs were used as solvent and selector in chiral liquid–liquid extraction for the first time. The AAILs have shown distinct enantioselectivity in amino acid extraction. Using these functional AAILs as acceptor phase and ethylacetate as donor phase, more L-enantiomer of amino acid was extracted into the ionic liquid phase than that of D-enantiomer. The influencing factors, including AAILs structure, copper ion concentration, organic phase and amino acid concentration, were investigated. We found that the enantioselective enrichment of racemic amino acids was achieved through a chiral ligand-exchange mechanism. The enantioselectivity of single-step extraction was up to enantiomeric excess value of 50.6%. Moreover, the functional AAILs were found to be efficient extraction solvents for amino acids. The logarithm of distribution coefficient for L-Phe was in the range of 3.4–3.6 in the ionic liquid–ethylacetate two-phase system. This liquid–liquid extraction approach may extend the application of ionic liquids in chiral separations.  相似文献   

2.
Tang F  Wu K  Nie Z  Ding L  Liu Q  Yuan J  Guo M  Yao S 《Journal of chromatography. A》2008,1208(1-2):175-181
Amino acid ionic liquids (AAILs) containing imidazolium cations and amino acid (AA) anions, were synthesized and applied as task-specific ionic liquids. A sensitive and fast liquid chromatography-mass spectrometry (LC-MS) method was established for the quantitative analysis of 20 AAILs. Using ion pairing-reversed phase liquid chromatography technique, heptafluorobutyric acid was used as ion-pairing reagent to increase the retention of AAILs. Based on the zwitterionity of amino acid, this method was proposed to determine both the cation and the anion of AAILs simultaneously. The limit of detection of this method is down to 1-15ng/mL and the analysis time is less than 15min. According to the analytical data of seven selected AAILs, we found that the content of amino acid anion is always lower than that of butyl methyl imidazolium cation in AAILs. Moreover, the molar ratio of imidazolium cation to amino acid anion is dependent on the chemical property of the amino acid. These results supplied useful information on the interaction of imidazolium cation with acidic, basic, neutral and non-polar amino acids in AAILs.  相似文献   

3.
Here we report the synthesis and characterisation by X-ray photoelectron spectroscopy (XPS) of eight high purity amino acid-based ionic liquids (AAILs), each containing the 1-octyl-3-methylimidazolium, [C(8)C(1)Im](+), as a standard reference cation. All expected elements were observed and the electronic environments of these elements identified. A fitting model for the carbon 1s region of the AAILs is reported; the C aliphatic component of the cation was used as an internal reference to obtain a series of accurate and reproducible binding energies. Comparisons are made between XP spectra of the eight AAILs and selected non-functionalised ionic liquids. 1-octyl-3-methylimidazolium acetate was also studied as a model of the carboxyl containing amino acid anion. The influence of anionic substituent groups on the measured binding energies of all elements is presented, and communication between anion and cation is investigated. This data is interpreted in terms of hard and soft anions and compared to the Kamlet-Taft hydrogen bond acceptor ability, β, for the ionic liquids. A linear correlation is presented which suggests that the functional side chain, or R group, of the amino acid has little impact upon the electronic environment of the charge-bearing moieties within the anions and cations studied.  相似文献   

4.
The amino acid ionic liquids(AAILs) [C3mim][Gly](1-propyl-3-methylimidazolium glycine) and [C4mim][Gly](1-butyl-3methylimidazolium glycine) have been prepared by the neutralization method and characterized by 1 H NMR spectroscopy and differential scanning calorimetry(DSC).The values of their density,surface tension and refractive index were measured at(298.15 ± 0.05) K.Since the AAILs can form strong hydrogen bonds with water,small amounts of water are difficult to remove from the AAILs by common methods.In order to eliminate the effect of the impurity water,the standard addition method(SAM) was applied to these measurements.A new concept which is called the ionic parachor has been put forward.The [C n mim] + cations were treated as a group of reference ions and the individual values of their ionic parachor were evaluated in terms of an extrathermodynamic assumption.Then,using the values of the ionic parachor of reference ions,the parachor,surface tension γ and refractive index n D of the ionic liquids investigated in this work were estimated.The estimated values correlate quite well with the corresponding experimental values.  相似文献   

5.
The interactions between eight amino acid based anions and four imidazolium-based cations have been investigated by density functional theory. The electronic and structural properties of the resulting amino acid ionic liquids (AAILs) have been unveiled by means of the atoms in molecules framework. The calculated interaction energy was found to increase in magnitude with decreasing alkyl chain length at imidazolium ring. Moreover, AAILs composed of an amino acid with some functional group such as aromatic ring had decreased interaction energy. Finally, several correlative relationships between glass transition temperature and interaction energy as well as density at bond critical point have been checked for 1-ethyl-3-methylimidazolium based ILs. Although the obtained correlations do not show excellent fits, a preliminary estimation of the glass transition temperature of different AAILs can be achieved by use of their electronic properties.  相似文献   

6.
According to Fukumoto's method, a new series of ionic liquids (ILs) based on alanine, [Cnmim][Ala] ( n=2,3,4,5,6), which comprise 1-alkyl-3-methylimidazolium cation ([Cnmim](+)) and alanine anions ([Ala] (-)), were prepared and characterized. In terms of standard addition method, the density and surface tension of amino acid ILs [Cnmim][Ala] (1-alkyl-3-methylimidazolium alpha-aminopropionic acid salt) were measured in the temperature range 293.15-343.15+/-0.05 K. The volume and surface properties of the ILs [Cnmim][Ala] were discussed. A new method of determining parachor of ionic compound was proposed and was applied to estimate the physicochemical properties of amino acid ionic liquids (AAILs): molecular volume, surface tension, molar enthalpy of vaporization, and thermal expansion coefficient. In comparison with Deetlefs's method of using neutral parachor contribution, the method proposed in this work makes smaller error in estimating properties of AAILs.  相似文献   

7.
Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1‐alkyl‐3‐methylimidazolium L ‐proline (L ‐Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers—dl ‐phenylalanine (dl ‐Phe), dl ‐histidine (dl ‐His), dl ‐tryptophane (dl ‐Trp), and dl ‐tyrosine (dl ‐Tyr)—were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (Rs)=3.26–10.81 for HPLC; Rs=1.34–4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L ‐Pro form ion pairs on the surface of the stationary phase or on the inner surface of the capillary. The ternary copper complexes with L ‐Pro are consequently attached to the support surface, thus inducing an ion‐exchange type of retention for the dl ‐enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand‐exchange‐based chiral separation. It also reveals the tremendous application potential of this new type of task‐specific ILs.  相似文献   

8.
Amino acid ionic liquids (AAILs) with l ‐lysine (l ‐Lys) as anion were synthesized and applied as new chiral ligands in Zn(II) complexes for chiral ligand‐exchange CE. After effective optimization, baseline enantioseparation of seven pairs of dansylated amino acids was achieved with a buffer of 100.0 mM boric acid, 5.0 mM ammonium acetate, 3.0 mM ZnSO4, and 6.0 mM [C6mim][l ‐Lys] at pH 8.2. To validate the unique behavior of AAILs, a comparative study between the performance of Zn(II)‐l ‐Lys and Zn(II)‐[C6mim][l ‐Lys] systems was conducted. In Zn(II)‐[C6mim][l ‐Lys] system, it has been found that the improved chiral resolution could be obtained and the migration times of the three test samples were markedly prolonged. Then the separation mechanism was further discussed. The role of [C6mim][l ‐Lys] indicated clearly that the synthesized AAILs could be used as chiral ligands and would have potential utilization in separation science in future.  相似文献   

9.
The amino acid ionic liquids (AAILs) [C3mim][Gly] (1-propyl-3-methylimidazolium glycine) and [C4mim][Gly] (1-butyl-3-methylimidazolium glycine) have been prepared by the neutralization method and characterized by 1H NMR spectroscopy and differential scanning calorimetry (DSC). The values of their density, surface tension and refractive index were measured at different temperatures. Since the AAILs can form strong hydrogen bonds with water, small amounts of water are difficult to remove from the AAILs by common methods. In order to eliminate the effect of the impurity as water, the standard addition method (SAM) was applied to these measurements. The values of thermal expansion coefficients, α, surface excess energy, Ea, surface excess entropy, Sa, and molar refraction, Rm, for the AAILs were determined.  相似文献   

10.
采用浸渍蒸发法将四甲基铵甘氨酸([N1111][Gly])和四甲基铵赖氨酸([N1111][Lys])两种离子液体分别负载到硅胶(SG)表面,利用EA、TGA、BET和FT-IR等技术对所得到的吸附剂进行表征,考察了离子液体种类、离子液体负载量和温度等条件对其CO_2吸附性能的影响。结果表明,离子液体成功负载到硅胶表面,所制得的负载型氨基酸离子液体对二氧化碳具有良好的吸附性能。在所考察的温度范围(303.15-323.15 K)内,温度越高,平衡吸附量越小;在负载量为10%-60%,随着负载量的增加,平衡吸附量先增加后减小。对于[N1111][Gly]/SG,当负载量为22.4%(质量分数)、吸附温度为30℃、压力为0.1 M Pa时,二氧化碳的平衡吸附量可达到41 mg/g(相对于1 mol AAILs吸附0.62 mol CO_2),而且,吸附20 min即可达到平衡吸附量的90%。吸附剂在循环使用六次之后,其结构与性能均保持良好。  相似文献   

11.
Amino acid ionic liquids (AAILs) have huge potential in the field of protein chemistry, enzymatic reactions, templates for synthetic study etc. which is due to their distinctive properties like unique acid-base characteristics, tunable hydrophobicity, hydrogen bonding ability and strong hydration effects. To explore the field of bio-ionic liquids for its real life applications and sustainable technology development, it is essential to have better understanding of these newly researched liquid salts in life’s most chosen medium, i.e. in aqueous medium, through study of their physicochemical properties in aqueous solutions. In this context, we are reporting herewith measurements and analysis of volumetric properties in the temperature range of (293.15 to 313.25) K and acoustic properties at 298.15 K in the concentration range of (0.05 to 0.5) mol · kg−1 for aqueous solutions of 1-butyl-3-methylimidazolium [Bmim] based amino acid ionic liquids, prepared from glycine, l-alanine, l-valine, l-leucine and l-isoleucine. The experimental density and sound speed data were used to obtain apparent, partial and limiting molar volumes as well as isentropic and isothermal compressibility properties. These data have been further used to understand electrostriction as well as concentration dependence of internal pressure. The hydration numbers for AAILs in aqueous medium were estimated from compressibility data using Passynski method and the estimated ionic hydration numbers are compared with those obtained using activity data. The results are explained in terms of cooperative hydration effects, hydrophobic interactions, kosmotropic behavior of AAILs, etc.  相似文献   

12.
Structural Chemistry - The interaction between anions and cations within amino acid-based ionic liquids (AAILs) are studied in the gas phase and in three different solvents (DMSO, water, and...  相似文献   

13.
We examined lyotropic liquid-crystalline behaviour of glycolipids (GLs) with a normal alkyl chain or a diacetylene-functionalised alkyl chain in several amino acid ionic liquids (AAILs). It was found that the mixtures of GL and AAIL form various nanosegregated liquid-crystalline phases, such as smectic, bicontinuous cubic and hexagonal columnar phases, depending on the two-component ratio and AAIL species. The observed liquid-crystalline behaviours were summarised as phase diagrams. It is noteworthy that the employment of amino acid anions with superior hydrogen-bonding ability, such as aspartic and glutamic acid anions, gives a phase diagram with a wide liquid-crystalline region. Comparing with a phase diagram obtained for the GL/water mixtures, we gained insights on the similarity/dissimilarity between water and AAILs as self-organisation media of amphiphiles. For the diacetylene-functionalised molecule, UV irradiation was carried out to progress polymerisation. It is of interest that the polymerisation reaction progressed when the glycolipid formed a smectic phase in an AAIL while a reaction progress was not found when it formed a bicontinuous cubic phase in another AAIL. We believe that AAILs have a great potential to be a liquid media not only for amphiphiles but for various functional materials, such as polymers and colloids, to form novel assemblies.  相似文献   

14.
Protic ionic liquids (PILs) in solution especially in water have attracted more and more attention due to their unique properties. The solvation of PILs in water is important to their properties and applications. To explore the solvation of bio-based PILs in water, acidity of 49 [AA]X amino acid ionic liquids (AAILs) consisting of 7 different cations and 7 different anions was studied as a favorable probe. The pKa values for [AA]X PILs containing same cations were obtained and discussed. The acidity strength of the [AA]X PILs varies with both cation and anion which does not follow the conventional assumption that the acidity for PILs is independent of anions. The acidic discrepancy of [AA]X PILs aqueous solution is probably mediated by the formation of ion pairs according to a revised solvation model of PILs. Quantum-chemistry calculation was employed to unpuzzle anion's different effects on the acid balance of cations where cation-anion hydrogen bonds play an important role. Such difference in acidity allows us to understand the formation of solvated ion pairs. This work provides an insight into the fundamental solvation of PILs from acid perspective and their influence on acidity properties for the first time.  相似文献   

15.
本文用中和法合成了基于烷基咪唑的甘氨酸离子液体[C3mim][Gly](1-丙基-3-甲基咪唑甘氨酸离子液体)和[c4miml[Gly](1-丁基-3.甲基咪唑甘氨酸离子液体),在298.15K下,0.0400-0.5000molkg^-1浓度范围内测定了不同浓度[C4mim][Oly]和[c3mim][Gly]离子液体水溶液的密度和表面张力,得到了溶液等张比容的实验值,提出了预测不同浓度溶液等张比容的经验方程,利用这个经验方程和李以圭等人提出的溶液表面张力模型,分别估算了这两种离子液体水溶液的表面张力,其估算值和实验值在误差范围内很好地吻合.  相似文献   

16.
Systematic molecular dynamics simulations are used to study the structure, dynamics and transport properties of the ionic liquids composed of the tetra-butylphosphonium ([TBP](+), or [P(C(4)H(9))(4)](+)) cation with six amino acid ([AA](-)) anions. The structural features of these ionic liquids were characterized by calculating the partial site-site radial distribution functions, g(r), and computing the dihedral angle distribution of n-butyl side chains in the [TBP](+) cations. The dynamics of the ionic liquids are described by studying the velocity autocorrelation function (VACF) and the mean-square displacement (MSD) for the centers of mass of the ions at different temperatures. The ionic diffusion coefficients and the electrical conductivities were evaluated from both the Einstein and Green-Kubo methods. The cross-correlation terms in the electric-current autocorrelation functions, which are an indication of the ion pair correlations, are investigated. The cationic transference numbers were also estimated to study the contributions of the anions and cations to the transport of charge in these ionic liquids. We determined the role of the amino acid anion structures on the dynamical behavior and the transport coefficients of this family of ionic liquids. In general, the MSD and self-diffusion coefficients of the relatively heavier non-planar [TBP](+) cations are smaller than those of the lighter amino acid anions. Introducing polar functional groups (acid or amide) in the side chain of [AA](-) decreases the diffusion coefficient and electrical conductivity of AAILs. The major factors for determining the magnitude of the transport coefficients are the chemical functionality and the length of the alkyl side chain of the [AA](-) anion of these [TBP][AA] ionic liquids.  相似文献   

17.
The densities of 1-n-butyl-3-methylimidazolium ([Bmim]) based amino acid ionic liquids (AAILs) prepared from glycine [Gly], alanine [Ala], and valine [Val], namely [Bmim][Gly], [Bmim][Ala] and [Bmim][Val], in aqueous?~?0.2 mol·kg?1 polyethylene glycol (PEG400, PEG600 or PEG1000) and PEG400 solutions containing?~?(0.0946, 0.1891 and 0.3820) mol·kg?1 of [Bmim][Gly], have been determined at 298.15 K. The experimental densities were used to evaluate the apparent molar volumes in the mixed solvent system and further used to obtain transfer molar volumes of AAILs for their transfer from water to aqueous PEG solutions and of PEG400 for its transfer from water to aqueous solutions containing (0.0946, 0.1891 and 0.3820) mol·kg?1 of [Bmim][Gly]. The transfer molar volumes of AAILs and of PEG400 are found to be negative. The effects of alkyl chain-length variation on the anion of AAILs as well as the chain-length of PEG on transfer molar volumes are investigated and discussed in terms of hydrophobic–hydrophilic, hydrophobic–hydrophobic, and ion–hydrophobic interactions.  相似文献   

18.
New kinds of amino acid ionic liquids (AAILs) with pyridinium as cations and l-lysine (l-Lys) as anion have been developed as the available chiral ligands coordinated with Zn(II) in chiral ligand-exchange capillary electrophoresis (CLE-CE). Four kinds of AAILs, including [1-ethylpyridinium][l-lysine], 1-butylpyridinium][l-lysine], [1-hexylpyridinium][l-lysine] and 1-[octylpyridinium][l-lysine], were successfully synthesized and characterized by nuclear magnetic resonance and mass spectrometry. Compared with other AAILs, the best chiral separation of Dns-d, l-amino acids could be achieved when [1-ethylpyridinium][l-lysine] was chosen as the chiral ligand. It has been found that after investigating the influence of key factors on the separation efficiency, such as pH of buffer solution, the ratio of Zn(II) to ligand and complex concentration, eight pairs of Dns-d, l-AAs enantiomers could be baseline separated and three pairs were partly separated under the optimum conditions. The proposed CLE-CE method also exhibited favorable quantitative analysis property of Dns-d, l-Met with good linearity (r2 = 0.998) and favorable repeatability (RSD ≤ 1.5%). Furthermore, the CLE-CE system was applied in investigating the kinetic contents of l-amino acid oxidase, which implied that the proposed system has the potential in studying the enzymatic reaction mechanism.  相似文献   

19.
Amino acid ionic liquids (AAILs) have attracted much attention due to their special chemical and physical properties, especially their outstanding biocompatibility and truly green aspect. In this work, a novel electrochemical biosensing platform based on AAILs/carbon nanotubes (CNTs) composite was fabricated. AAILs were used as a novel solvent for glucose oxidase (GOD) and the GOD-AAILs/CNTs/GC electrode was conveniently prepared by immersing the carbon nanotubes (CNTs) modified glassy carbon (GC) electrode into AAILs containing GOD. The direct electrochemistry of GOD on the GOD-AAILs/CNTs/GC electrode has been investigated and a pair of reversible peaks was obtained by cyclic voltammetry. The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen. Due to the synergic effect of AAILs and CNTs, the GOD-AAILs/CNTs/GC electrode shows excellent electrocatalytic activity towards glucose with a linear range from 0.05 to 0.8 mM and a detection limit of 5.5 μM (S/N = 3). Furthermore, the biosensor exhibits good stability and ability to exclude the interference of commonly coexisting uric and ascorbic acid. Therefore, AAILs/CNTs composite can be a good candidate biocompatible material for the direct electrochemistry of the redox-active enzyme and the construction of third- generation enzyme sensors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号