首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
The equations describing the stationary envelope of periodic waves on the surface of a liquid of constant or variable depth are investigated. Methods previously used for investigating the propagation of solitons [1–5] are extended to the case of periodic waves. The equations considered are derived from the cubic Schrödinger equation assuming slow variation of the wave parameters. In using these equations it is sometimes necessary to introduce wave jumps. By analogy with the soliton case a wave jump theory in accordance with which the jumps are interpreted as three-wave resonant interactions is considered. The problems of Mach reflection from a vertical wall and the decay of an arbitrary wave jump are solved. In order to provide a basis for the theory solutions describing the interaction of two waves over a horizontal bottom are investigated. The averaging method [6] is used to derive systems of equations describing the propagation of one or two interacting wave's on the surface of a liquid of constant or variable depth. These systems have steady-state solutions and can be written in divergence form.The author wishes to thank A. G. Kulikovskii and A. A. Barmin for useful discussions.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 113–121, September–October, 1989.  相似文献   

2.
The paper considers two dynamical problems for an isotropic elastic media with spatially varying functional inhomogeneity, the propagation of surface anti-plane shear SH waves, and the stress deformation state of an anti-plane vibrating medium with a semi-infinite crack. These problems are considered for five different types of inhomogeneity. It is shown that the propagation of surface anti-plane shear waves is possible in all these cases. The existence conditions and the speed of propagation of surface waves have been found. In the section devoted to the investigation of the stress deformation state of a vibrating medium with a semi-infinite crack, Fourier transforms along with the Wiener Hopf technique are employed to solve the equations of motion. The asymptotic expression for the stress near the crack tip is analyzed, which leads to a closed form solution of the dynamic stress intensity factor (DSIF). Here also the problem is considered for five different functional inhomogeneities. From the formulae for DSIF thus obtained one can see that the inhomogeneity can have both a quantitative and qualitative impact on the character of the stress distribution near the crack.Received: 25 July 2002, Accepted: 3 April 2003, Published online: 27 June 2003PACS: 83.20.Lr, 83.50.Tq, 83.50.Vr, 46.30.Nz  相似文献   

3.
Propagation of electro-elastic surface Love waves in a structure consisting of a piezoelectric half-space substrate of crystal class 6, 4, 6 mm or 4 mm and two layers, one of which (adjacent to the substrate) is a conducting material and the second is either a conducting or a dielectric material, is considered. The mathematical model obtained includes all the above crystal classes i.e. the surface wave problems related to all these classes are presented in a single mathematical model. The dispersion equation for the existence of Love surface waves with respect to phase velocity is obtained. Numerical calculations are carried out for three different layered structures. The effect of the second layer on the propagation behaviour of the surface Love wave in the structure is revealed.  相似文献   

4.
It is proposed to consider the propagation of surface waves along a tangential magnetohydrodynamic discontinuity in the particular case where the fluid velocities on both sides of the interface are equal to zero. In [1] it was shown that waves called surface Alfvén waves may be propagated along the surface separating a semi-infinite region without a field from a region with a uniform magnetic field. The linear theory of surface Alfvén waves in a compressible medium was considered in [2]. In [3] the damping of surface Alfvén waves as a result of viscosity and heat conduction was investigated. The propagation of low-amplitude nonlinear surface Alfvén waves in an incompressible fluid in the absence of dissipative processes is described by the integrodifferential equation obtained in [4]. By means of a numerical solution of this equation it was shown that a perturbation initially in the form of a sinusoidal wave will break. The breaking time was determined. In this paper the equation derived in [4] is extended to the case of a viscous fluid. It is shown that the equation obtained does not have steady-state solutions. The propagation of periodic disturbances is investigated numerically. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 94–104, November–December, 1986. The author wishes to thank L. S. Fedorov for assisting with the calculations.  相似文献   

5.
Composite waves on the surface of the stationary flow of a heavy ideal incompressible liquid are steady forced waves of finite amplitude which do not disappear when the pressure on the free surface becomes constant but rather are transformed into free nonlinear waves [1]. It will be shown that such waves correspond to the case of nonlinear resonance, and mathematically to the bifurcation of the solution of the fundamental integral equation describing these waves. In [2], a study is made of the problem of composite waves in a flow of finite depth generated by a variable pressure with periodic distribution along the surface of the flow. In [3], such waves are considered for a flow with a wavy bottom. In this case, composite waves are defined as steady forced waves of finite amplitude that, when the pressure becomes constant and the bottom is straightened, do not disappear but are transformed into free nonlinear waves over a flat horizontal bottom. However, an existence and uniqueness theorem was not proved for this case. The aim of the present paper is to fill this gap and investigate the conditions under which such waves can arise.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 88–98, July–August, 1980.  相似文献   

6.
Weakly non-linear plane waves are considered in hyperelastic crystals. Evolution equations are derived at a quadratically non-linear level for the amplitudes of quasi-longitudinal and quasi-transverse waves propagating in arbitrary anisotropic media. The form of the equations obtained depends upon the direction of propagation relative to the crystal axes. A single equation is found for all propagation directions for quasi-longitudinal waves, but a pair of coupled equations occurs for quasi-transverse waves propagating along directions of degeneracy, or acoustic axes. The coupled equations involve four material parameters but they simplify if the wave propagates along an axis of material symmetry. Thus, only two parameters arise for propagation along an axis of twofold symmetry, and one for a threefold axis. The transverse wave equations decouple if the axis is fourfold or higher. In the absence of a symmetry axis it is possible that the evolution equations of the quasi-transverse waves decouple if the third-order elastic moduli satisfy a certain identity. The theoretical results are illustrated with explicit examples.  相似文献   

7.
The propagation of surface waves beneath a periodically inhomogeneous ice sheet is considered. Areas of broken ice and hummock ridges are considered as irregularities. It is shown that waves with frequencies corresponding to wind and swell waves are strongly scattered by the irregularities and are damped exponentially as they propagate beneath the ice.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 162–169, September–October, 1996.  相似文献   

8.
Long surface capillary-gravity waves and waves beneath an elastic plate simulating an ice sheet are considered for a liquid of finite depth. These waves are described by a generalized Kadomtsev-Petviashvili equation containing higher (as compared with the ordinary Kadomtsev-Petviashvili equation) space derivatives. The generalized Kadomtsev-Petviashvili equation has waveguide solutions (waveguides) corresponding to traveling waves which are periodic in the direction of propagation and localized in the transverse direction. These waves result from the instability of uniform (carrier) periodic waves with respect to transverse perturbations. The stability of the waveguides with respect to longitudinal longwave perturbations is studied. The behavior of these perturbations depends on the wavenumber of the carrier periodic wave. Three intervals of wavenumbers corresponding to all the possible types of governing equations are considered.  相似文献   

9.
This paper describes a semi-analytic approach to problems involving rectangular elastic plates of shallow draft floating on water. Specifically, two problems are considered: the scattering of plane monochromatic incident waves by a single elastic plate and the propagation/attenuation of waves through a periodic rectangular arrangement of plates. The approach combines Fourier methods with Rayleigh–Ritz methods for free modes of rectangular plates which reduces each problem to an algebraic system of equations which are numerically accurate and efficient to compute. A selection of results are given to illustrate the work. The approach can be applied to many problems in hydroelasticity including the seakeeping of large flat-bottomed marine vessels, deflections in very large floating structures such as offshore airports and wave propagation through areas of broken sea ice.  相似文献   

10.
Two-dimensional plane wave propagation in an orthotropic micropolar elastic solid is studied. There exist three types of coupled waves in xy-plane, whose velocities depend upon the angle of propagation and material parameters. A problem on reflection of these plane waves from a stress-free boundary is considered. The reflection coefficients of various reflected waves are computed numerically for a particular model of the solid. The effects of anisotropy upon the velocities and reflection coefficients are depicted graphically for different angles of propagation.  相似文献   

11.
The propagation of spherical waves in an isotropie elastic medium has been studied sufficiently completely (see, e.g., [1–4]). it is proved [5, 6] that in imperfect solid media, the formation and propagation of waves similar to waves in elastic media are possible. With the use of asymptotic transform inversion methods in [7] a problem of an internal point source in a viscoelastic medium was investigated. The problem of an explosion in rocks in a half-space was considered in [8]. A numerical Laplace transform inversion, proposed by Bellman, is presented in [9] for the study of the action of an explosive pulse on the surface of a spherical cavity in a viscoelastic medium of Voigt type. In the present study we investigate the propagation of a spherical wave formed from the action of a pulsed load on the internal surface of a spherical cavity in a viscoelastic half-space. The potentials of the waves propagating in the medium are constructed in the form of series in special functions. In order to realize viscoelasticity we use a correspondence method [10]. The transform inversion is carried out by means of a representation of the potentials in integral form and subsequent use of asymptotic methods for their calculation. Thus, it becomes possible to investigate the behavior of a medium near the wave fronts. The radial stress is calculated on the surface of the cavity.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 139–146, March–April, 1976.  相似文献   

12.
A Kirchhoff-Love type applied theory is used to study the specific characteristics of harmonic waves and vibrations of a helically anisotropic shell. Special attention is paid to axisymmetric and bending vibrations. In both cases, the dispersion equations are constructed and a qualitative and numerical analysis of their roots and the corresponding elementary solutions is performed. It is shown that the skew anisotropy in the axisymmetric case generates a relation between the longitudinal and torsional vibrations which is mathematically described by the amplitude coefficients of homogeneous waves. In the case of a shell with rigidly fixed end surfaces, the dependence of the first two natural frequencies on the shell length and the helical line slope α, i.e., the geometric parameter of helical anisotropy, is studied. A boundary value problem in which longitudinal vibrations are generated on one of the end surfaces and the other end is free of forces and moments is considered to analyze the degree of transformation of longitudinal vibrations into longitudinally torsional vibrations. In the case of bending vibrations, two problems for a half-infinite shell are studied as well. In the first problem, the waves are excited kinematically by generating harmonic vibrations of the shell end surface in the plane of the axial cross-section, and it is shown that the axis generally moves in some closed trajectories far from the end surface. In the second problem, the reflection of a homogeneous wave incident on the shell end is examined. It is shown that the “boundary resonance” phenomenon can arise in some cases.  相似文献   

13.
The problem of the propagation of waves on the free surface of layer of a two-phase mixture is considered. An analytic solution in the form of damped steady waves is found in the linear approximation. The dispersion relation, an expression for the decay rate, and the shape of the free surface are determined. The effect of the dispersed phase on the wave velocity is found.  相似文献   

14.
This paper deals with the propagation of surface waves of an assigned wavelength on a thermoviscoelastic half-space. It is shown that a unique surface wave of an assigned wavelength, which satisfies the adopted criteria for behaviour at infinity, always exists. This wave is interpreted as a superposition of three dispersive inhomogeneous plane waves. The superposed waves have different directions of propagation and different phase velocities. Their directions of propagation are not parallel to the stress-free surface. The plane of constant amplitude that corresponds to each of these superposed waves is parallel to the stress-free surface and moves to it with a constant velocity, which is different for each of the superposed waves. The numerical computations refer to some typical values of the material and thermal constants at different values of the wavelength when the half-space is thermally insulated.  相似文献   

15.
The theory of radiation and propagation of sound waves in an ideal medium from a cylindrical surface has been presented in detail in [1–4]. The theory of radiation of a cylinder in a viscous medium is considered in the present paper.  相似文献   

16.
International Applied Mechanics - The statement and method of solving problems on the propagation of axisymmetric harmonic waves in a highly elastic laminated composite material are considered...  相似文献   

17.
Second-mode nonlinear internal waves at a thin interface between homogeneous layers of immiscible fluids of different densities have been studied theoretically and experimentally. A mathematical model is proposed to describe the generation, interaction, and decay of solitary internal waves which arise during intrusion of a fluid with intermediate density into the interlayer. An exact solution which specifies the shape of solitary waves symmetric about the unperturbed interface is constructed, and the limiting transition for finite-amplitude waves at the interlayer thickness vanishing is substantiated. The fine structure of the flow in the vicinity of a solitary wave and its effect on horizontal mass transfer during propagation of short intrusions have been studied experimentally. It is shown that, with friction at the interfaces taken into account, the mathematical model adequately describes the variation in the phase and amplitude characteristics of solitary waves during their propagation.  相似文献   

18.
Conventional plane harmonic waves decay in direction of propagation, but unconventional harmonic waves grow in the direction of propagation. While a single unconventional wave cannot be a solution to a physically meaningful boundary value problem, these waves may have an essential contribution to the overall solution of a problem as long as this is a superposition of unconventional and conventional waves. A fourth order diffusion equation with proper thermodynamic structure, and the Burnett equations of rarefied gas dynamics exhibit conventional and unconventional waves. Steady state oscillating boundary value problems are considered to discuss the interplay of conventional and unconventional waves. Results show that as long as the second law of thermodynamics is valid, unconventional waves may contribute to the overall solution, which, however is dominated by conventional waves, and behaves as these.  相似文献   

19.
The Cauchy problems of the propagation of a single wave and the interaction of two solitary waves of different amplitude are solved numerically for the case of slow symmetric surface waves in a magnetic tube. It is found that the solitary waves interact in the same way as the solitons of the known soliton equations such as the Korteweg-de Vries and Benjamin-Ono equations, i.e., preserve their shape after interacting. The way in which the solitons decrease at infinity is discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 183–186, March–April, 1989.The author wishes to thank M. S. Ruderman for formulating the problem and V. B. Baranov for his interest in the work.  相似文献   

20.
A numerical analytic method is proposed to solve nonstationary coupled problems of thermoelasticity with regard to the finite velocity of thermal waves. The method is used to analyze the nonstationary spatial propagation of elastic waves from a cavity subjected on its surface to mechanical and thermal loads. The ray theory of propagation of wavefield discontinuities is used. To determine the time dependence of the field parameters behind the wavefront and to account for the relationship between the mechanical and thermal fields with prescribed accuracy, a numerical iterative procedure that employs the properties of characteristics is used. Plots are presented for the nonstationary stresses and temperature near a prolate spheroidal cavity subject to step mechanical loading and near an elliptical cylindrical cavity subject to thermal shock __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 8, pp. 79–88, August 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号