首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microscopic, mechanical, rheological and thermal tests were carried out in order to determine the recycling behaviour of PP/vegetal fibre composites. Different composites using hemp and sisal were characterized. All results were compared with PP-g-MA/hemp composites and PP/glass fibre composites.The results prove that mechanical properties are well conserved with the reprocessing of PP/vegetal fibre composites but that there is poor adhesion between the fibres and PP without any treatment. The addition of PP-g-MA shows an improvement of the bonding evidenced by MEB pictures. Vegetal fibres induce an increase in the percentage of crystallinity χc and in the crystallization temperature Tc which can be explained by the nucleating ability of the fibres improving crystallization of PP. The Newtonian viscosity η0 decreases with cycles, indicating a decrease in molecular weight and chain scissions induced by reprocessing. The decrease of fibre length with reprocessing could be another reason for viscosity decrease.  相似文献   

2.
3.
Hybrid composites consisting of isotactic poly(propylene) (PP), sisal fiber (SF), and maleic anhydride grafted styrene‐(ethylene‐co‐butylene)‐styrene copolymer (MA‐SEBS) were prepared by melt compounding, followed by injection molding. The melt‐compounding torque behavior, thermal properties, morphology, crystal structure, and mechanical behavior of the PP/MA‐SEBS/SF composites were systematically investigated. The torque test, thermogravimetric analysis, differential scanning calorimetric, and scanning electron microscopic results all indicated that MA‐SEBS was an effective compatibilizer for the PP/SF composites, and there was a synergism between MA‐SEBS and PP/SF in the thermal stability of the PP/MA‐SEBS/SF composites. Wide‐angle X‐ray diffraction analysis indicated that the α form and β form of the PP crystals coexisted in the PP/MA‐SEBS/SF composites. With the incorporation of MA‐SEBS, the relative amount of β‐form PP crystals decreased significantly. Mechanical tests showed that the tensile strength and impact toughness of the PP/SF composites were generally improved by the incorporation of MA‐SEBS. The instrumented drop‐weight dart‐impact test was also used to examine the impact‐fracture behavior of these composites. The results revealed that the maximum impact force (Fmax), impact‐fracture energy (ET), total impact duration (tr), crack‐initiation time (tinit), and crack‐propagation time (tprop) of the composites all tended to increase with an increasing MA‐SEBS content. From these results, the incorporation of MA‐SEBS into PP/SF composites can retard both the crack initiation and propagation phases of the impact‐fracture process. These prolonged the crack initiation and propagation time and increased the energy consumption during impact fracture, thereby leading to toughening of PP/MA‐SEBS/SF composites. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1214–1222, 2002  相似文献   

4.
W. Stark 《Polymer Testing》2013,32(2):231-239
Carbon fibre prepregs have found widespread application in lightweight constructions. They are based on a carbon fibre fabric impregnated with reactive epoxy resin. Measurements were carried out using commercially available prepreg material. For Dynamic Mechanical Analysis (DMA), a single cantilever measuring device was applied. The DMA results were refined by additional DSC measurements. The measurements were carried out with dynamic heating in the temperature range ?90 to 280 °C. The heating rates were 1 and 2 K/min, respectively. A glass transition of the uncured material (Tg0) near 1 °C, and crosslinking-induced vitrification and devitrification at the maximal glass transition temperature of the cured material (Tgmax) in the temperature range 220 to 230 °C were found. The activation energies for the glass transitions were determined using an Arrhenius plot. By detailed consideration of the influence of the frequency on the DMA data, indications for gelation were deduced.  相似文献   

5.
Milled phenol-formaldehyde glass-fibre scrap (prepreg) was mixed with polypropylene (PP) and polyamide-6 (PA6). The oxidation induction time (OIT) of PP/prepreg composite measured by both chemiluminescence (CL) and Differential Scanning Calorimetry (DSC) was significantly longer than the oxidation induction time of unstabilised base PP. In addition, mechanical testing showed that the prepreg filler stabilised both PP and PA6 towards oxidation during long-term accelerated ageing. Headspace-gas chromatography/mass spectrometry (HS-GC/MS) showed that PP/prepreg composites emit somewhat larger amounts of volatile compounds compared to the reference PP/glass fibre composites, while the amount of volatile components emitted from PA6/prepreg composites was similar to the reference PA6/glass fibre composites. The new prepreg composites could have potential in thermally demanding applications especially if a secondary phosphite stabiliser is added to further increase the oxidative stability through synergy effects.  相似文献   

6.
In the present work, a new technique was developed to determine the interfacial properties of two opaque glass fibre/polypropylene (GF/PP) systems via fragmentation tests on single filament model composites. Fragmentation tests usually require the fibre inside the composites to be completely aligned in the loading direction. Since PP matrices are non-transparent, it is not possible to guarantee a priori this condition. Hence, a novel technique was developed to determine the inclination of the filaments embedded in the composites. The fibre–polymer systems were also evaluated by comparing their interfacial properties with the overall mechanical properties determined on pultruded GF/PP composites. The present work shows that the knowledge of the interfacial properties is important, not only to compare alternative fibre/matrix systems, but also to assess whether the level of adhesion in these systems is adequate to fabricate composites with good mechanical properties.  相似文献   

7.
A craze, the typical deformation zone in an amorphous polymer, can be divided into a precraze and a proper craze. A better understanding of the two corresponding formation processes is possible in terms of glass transition multiplicity.The precraze is associated with the molecular mobility in the confined flow zone, which is part of the main transition. The proper craze corresponds to the mobility in the flow transition zone (terminal zone for shear). A negative pressure generated by nonuniaxial stress is considered to be important for the maintainance of the molecular mobility in these zones belowT g . The behavior of the zones at negative pressure and low temperatures Tg is considered using a pressure-temperature diagram. The fibril structure of crazes is discussed by a defect diffusion model for the proper glass transition; it is correlated with the sequential physical aging of the corresponding frozen structural defects. Typical mode lengths of the molecular mobilities in the different zones are compared with typical craze parameters. The structure of the craze material is considered to result from confined flow processes which cannot percolate because in the main transition the flow is confined by entanglements, and in the flow transition zone the flow is stopped by releasing the negative pressure due to crack propagation.  相似文献   

8.
The flexural properties of isotactic polypropylene (PP) matrix composites reinforced with 5–30 vol% of unidirectional pitch‐based carbon, polyacrylonitrile (PAN)‐based carbon, e‐glass or aramid fibers were measured using both static and dynamic test methods. Previous research has shown that these pitch‐based carbon and aramid fibers are capable of densely nucleating PP crystals at the fiber surface, leading to the growth of an oriented interphase termed a “transcrystalline layer” (TCL), while the e‐glass and PAN‐based carbon fibers show no nucleating ability. The PP matrices examined included unmodified homopolymers, nucleated homopolymers and PP grafted with maleic anhydride (MA). The composites based on the unmodified PP homopolymers all exhibited poor fiber/matrix adhesion, regardless of fiber type and presence or absence of a TCL. The addition of nucleating agent to the PP matrix had no measurable effect on either the amount of TCL material in pitch‐based carbon‐fiber‐reinforced composites, as measured by wide‐angle X‐ray scattering, WAXS, or the static flexural properties of the composites reinforced with either type of carbon fiber. However, MA grafting reduced the transcrystalline fraction of the matrix in pitch‐based carbon‐fiber‐reinforced composites; at the highest level of MA grafting, the TCL was completely suppressed. In addition, high levels of MA grafting improved the transverse flexural modulus of the composites containing both types of carbon fibers, and reduced the extent of fiber pull‐out, indicating an improvement in fiber/matrix adhesion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Two grades of isotactic polypropylene (homopolymer and block copolymer) were filled with magnesium and aluminium hydroxides, and studied focusing the mechanical and fracture characteristics of the composites. As expected, dispersion of such fillers in PP resulted in improved stiffness and reduced tensile yield strength. By one hand, the composites fracture resistance was characterised at low strain rate applying the J‐integral concept; the resistance to crack growth initiation (JIC) was found decreasing as the Mg(OH)2 concentration was raised in the copolymer PP matrix. By the other hand, the linear‐elastic fracture mechanics (LEFM) parameters were determined by means of instrumented impact tests at 1 m/s on the homopolymer PP filled with uncoated Al(OH)3 particles. The higher the Al(OH)3 mean particle size, the lower the composite fracture energy (GIC). In the opposite, with commercial surface‐coated filler grades it was not possible to achieve LEFM conditions to characterise the fracture toughness of filled PP at 1 m/s, because the Mg(OH)2 surface coating, which is applied in practice to improve the melt processing, acts increasing the composite plasticity and reducing the tensile yield strength.  相似文献   

10.
Load separation is the theoretical basis for the single-specimen J-integral experiment and the incremental calculation of J-integral crack growth resistance (J-R) curves. This criterion has been experimentally studied in nongrowing crack records in several materials, and more recently a new method to extend the applicability to growing crack experiments has been proposed in testing steel. This article examines the applicability of the load separation criterion for evaluating ductile fracture mechanics parameters in rubber-modified polystyrenes and thermally treated polypropylene in the bending configuration. This criterion allows the load to be represented as the multiplication of two independent functions: a material deformation function and a crack geometry function. Its validity is evaluated with both stationary and growing crack experiments. η-factor calculation for smooth and side-grooved specimens was also tried using the simple method of Sharobeam and Landes, in order to identify material dependency. This article also investigates the applicability of the normalization method, based on the load separation criterion for evaluating J-R curves on PP and PS. A simple approach which combines a blunt notched and a precracked specimen experiment is proposed to determine the J-R curve of the materials studied. The resulting J-R curves are compared with multiple specimen results available in the literature for these materials. A good agreement between the J-R curves obtained from this simple method and from the multiple specimen technique was found. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The efficiency of near edge structure investigations in electron energy loss spectroscopy (EELS) is discussed for characterizing the chemical bonding of elements present in the interfacial zone in fibre/matrix composites at nanometre resolution. Two different examples of corresponding analyses are given for a SiC-fibre reinforced borosilicate glass. In particular, the chemical bonding between silicon and carbon or oxygen (e.g. SiC, SiO2 and SiOxCy), respectively, is characterized. The results have been attained in a fingerprint manner by comparing the fine structure measured from a material of unknown stoichiometry to that of a standard specimen. In addition, a possibility is demonstrated to image the chemical bonding by energy-filtered microscopy using energy loss near edge structures (ELNES).  相似文献   

12.
Polyaniline/γ-Al2O3 (PANI/γ-Al2O3) composites were synthesized by in-situ polymerization at the presence of HCl as dopant by adding γ-Al2O3 nanoparticles into aniline solution. The composites were characterized by FTIR and XRD. The thermogravimetry (TG) and modulated differential scanning calorimetry (MDSC) were used to study the thermal stability and glass transition temperature (T g) of the composites, respectively. The results of FTIR showed that γ-Al2O3 nanoparticles connected with the PANI chains and affected the absorption characteristics of the composite through the interaction between PANI and nano-sized γ-Al2O3. And the results of XRD indicated that the peaks intensity of the PANI/γ-Al2O3 composite were weaker than that of the pure PANI. From TG and derivative thermogravimetry (DTG) curves, it was found that the pure PANI and the PANI/γ-Al2O3 composites were all one step degradation. And the PANI/γ-Al2O3 composites were more thermal stable than the pure PANI. The MDSC curves showed that the nano-sized γ-Al2O3 heightened the glass transition temperature (T g) of PANI.  相似文献   

13.
The tear strength (TS) of rubber-silica composites is inevitably lowered by the reduction of viscoelastic dissipation imparted by the use of bifunctional silanes. It is of interest to find out whether promoting crack tip deviation represented by a slip-stick tearing can compensate for such a loss in the tear strength. Here, the phenomenon of crack growth in terms of the TS and also the tearing type is considered for both the untreated and silane-treated silica rubber composites to figure out the microstructure parameters affecting the slip-stick tearing. It was realized that within a certain volume fraction of the reinforcing filler, deviation whether in the form of slip-stick or knotty tearing can be found for both cases. Tearing for silane-treated silica is more similar to a slip-stick tearing with an ordered pattern of deviation and re-initiation; whereas tearing in the composites with untreated silica is like a knotty one with random deviation and re-initiation. Interestingly, a dual role was identified between the bound rubber content and the tearing: on one hand, increasing the bound rubber directly augments the viscoelastic dissipation and the value of TS, and on the other, it inversely suppresses the crack tip deviation. The second part of this work deals with applying strategies to promote crack tip deviation in treated silica systems. By increasing the degree of bonding at the rubber-silica interface and reducing the bound rubber, the tear deviation was successfully promoted. With a slip-stick type of tearing the crack had to proceed through a tortuous path, thereby enhancing the effective tear diameter and the subsequent tear strength. This roughening role of bound rubber is however insufficient to fully compete with the impact of bound rubber on the viscoelastic dissipation, and thus the decreased TS of composites with treated silica cannot be totally compensated by this strategy.  相似文献   

14.
Polyaniline/multi-walled carbon nanotube (PANI/MWNT) composites were prepared by in situ polymerization. Transmission electron microscope (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) were used to characterize the PANI/MWNT composites. Thermal stability and glass transition temperature (T g) were measured by thermogravimetry (TG) and temperature modulated differential scanning calorimetry (TMDSC), respectively. The TG and derivative thermogravimetry (DTG) curves indicated that with augment of MWNTs content, the thermal stability of PANI/MWNT composites increased continuously. While, T g increased and then decreased with the MWNTs content increasing from 0 to 20 mass%.  相似文献   

15.
The effect of 60Co γ-radiation on polymer composite materials (PCMs) based on reinforcing glass cloth, polyethylene (PE), polyamide (PA) and polypropylene (PP) matrices has been studied. It has been found that PCMs based on more durable PP and PA matrices have a substantially lower radiation resistance as compared to their PE-matrix analogs. More stable carbon-reinforced plastics based on the PE matrix also have a lower radiation resistance as compared to fiberglass plastics. High-strength PE fiber, PE film, and PE-matrix composites behave in fundamentally different manners under the action of radiation.  相似文献   

16.
Summary: In the last decades, the growing environmental awareness has resulted in a renewed interest in the use of natural materials for different applications. In this context, the use of wood in plastic to obtain composites has grown significantly. In the present work, heartwood and sapwood from Angelim Pedra (Hymenolobiun petraeum) were used to prepare PVC/wood composites. To study the composites with different wood types and filler contents the molecular dynamic was investigated through low field NMR by poton spin- lattice relaxation time measurements (T1H) and the thermal behavior was characterized by means of differential scanning calorimetry (DSC) focusing the glass transition temperature and thermogravimetric analyses (TGA) observing the changes in the thermal stability. It was found that increasing addition of wood flour (sapwood and heartwood) caused a small but progressive improvement of the decomposition temperature of the composites, whereas the glass transition temperature remains practically unchanged. In the molecular dynamic behavior, a gradual decrease in T1H values was observed with increasing sapwood and heartwood content, indicating that the composites became less rigid. The distribution curves of the domains showed a better interaction and phase dispersion between the composite components with higher filler content.  相似文献   

17.
Hyperbranched polymer with amino end groups (HBPA) and core-shell particle (CSP, which is fabricated through grafting HBPA onto the surface of silica nanoparticle) were incorporated into an epoxy matrix to fabricate a high performance composite. The effects of CSPs contents on the mechanical properties of composites were studied, discussing the results from tensile, flexural, and impact tests. The composites revealed noticeable improvements in tensile strength, elongation, flexural strength and impact strength in comparison to the neat epoxy or epoxy/HBPA system. The glass transition temperature (Tg) was also improved by the addition of CSP. Field emission scanning electron micrograph (FESEM) indicated that HBPA could favorable improve the compatibility between CSP and epoxy matrix. And the toughening mechanisms were the synergic effect of shearing deformation, phase separation, crack propagation, crack deflection, and crack pinning.  相似文献   

18.
The application of Boltzmann statistics to a complete distribution of molecular conformation energies of simplified homo‐ and copolymer models gives meaningful information about temperatures at which phase transitions take place in the bulk. We have calculated in the conformation statistical distribution (CSD) approximation Helmholtz free energy variation versus temperature δF = δU–TδS, where U and S are, respectively, the internal molecular energy and the Gibbs statistical entropy of the considered polymeric model. The deepest minima correspond to glass‐transition temperature (Tg) and melting temperature (Tm) of modelled polymers, while the remaining peaks are related to some other transitions, the existence of which is also experimentally proven. The adopted method is able to give Tg and Tm as a function of the molecular weight of polymers. Some indications can also be achieved about the instability of polymers. The same procedure has been applied to copolymers and blends and has given acceptable results for Tg and Tm as functions of the material microstructure and composition. Other thermal and mechanical properties, such as moduli, mobilities, chemical resistance to oxidation, physical tendency to miscibility, have been directly or indirectly estimated.  相似文献   

19.
Variable amounts of zinc and nickel salts, such as ZnSO4·7H2O and NiSO4·6H2O, have been incorporated into blends of polypropylene (PP)/ammonium polyphosphate (APP)/dipentaerythritol (DPER) with the aim of studying their effect on intumescent flame retardance (IFR). The PP/IFR/salt composites have been prepared using a twin-screw extruder, and their IFR behaviours have been evaluated through limiting oxygen index (LOI), vertical burning tests (UL-94), and cone calorimeter tests (CONE). The results show that, at an appropriate level, zinc and nickel salts can increase the LOI and decrease the heat release rate (HRR). The composites have been studied with the aid of thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The flame-retardant mechanism of the PP/IFR/salts system is also discussed in terms of catalytic charring. ZnSO4·7H2O has been shown to be the most effective among the aforementioned metal salts, which has proved to be strongly associated with its low melting point and the interaction between DPER and SO42−.  相似文献   

20.
A ductile‐to‐semiductile transition in the crack resistance behaviour of PP/MWNT composites is discussed, using an essential work of fracture approach based on a post yield fracture mechanics concept and its possible interrelation to the structural attributes studied by TEM, SEM, and WAXD. A maximum in the non‐essential work of fracture is observed at 0.5 wt.‐% MWNT content, which demonstrates the enhanced resistance to crack propagation compared to pure PP, followed by a sharp decline with the increase in MWNT content to 1.5 wt.‐%, which reveals a ductile‐to‐semiductile transition. Fracture kinetic studies present a qualitative picture of the nature of such a transition in terms of a) switch over from non‐steady (in pure PP) to steady‐state crack tip opening displacement rate (in nanocomposites), and b) a ductile‐to‐semiductile transition; largely as a result of delayed‐yielding of the nanocomposites.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号