首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some 2′-deoxy-1′,2′-seco-D-ribosyl (5′→3′)oligonucleotides (= 1′,2′-seco-DNA), differing from natural DNA only by a bond scission between the centers C(1′) and C(2′), were synthesized and studied in order to compare their structure properties and pairing behavior with those of corresponding natural DNA and homo-DNA oligonucleotides (2′,3′-dideoxy-β-D-glucopyranosyl oligonucleotides). Starting from (?)-D-tartaric acid, 2′-deoxy-1′,2′-secoadenosine derivative 9a and 1′,2′-secothymidine ( 9b ) were obtained in pure crystalline form. Using the phosphoramidite variant of the phosphite-triester method, a dinucleotide monophosphate 1′,2′-seco-d(T2) was synthesized in solution, while oligonucleotides 1′,2′-seco-d[(AT)6], 1′,2′-seco-d(A10) and 1′,2′-seco-d(T10) were prepared on solid phase with either automated or manual techniques. Results of UV- and CD-spectroscopic as well as gel-electrophoretic studies indicated that neither adenine-thymine base pairing (as observed in natural DNA and homo-DNA), nor the adenine-adenine base pairing (as observed in homo-DNA) was effective in 1′,2′-seco-DNA, Furthermore, hybrid pairing was observed neither between 1′.2′-seco-DNA and natural DNA nor between 1′,2′-seco-DNA and homo-DNA.  相似文献   

2.
Five previously undescribed trimetrexate analogues with bulky 2′-bromo substitution on the phenyl ring were synthesized in order to assess the effect of this structure modification on dihydrofolate reductase inhibition. Condensation of 2-[2-(2-bromo-3,4,5-trimethoxyphenyl)ethyl]-1,l-dicyanopropene with sulfur in the presence of N,N-diethylamine afforded 2-amino-5-(2′-bromo-3′,4′,5′-trimethoxybenzyl)-4-methyl-thiophene-3-carbonitrile ( 15 ) and 2-amino-4-[2-(2′-bromo-3′,4′,5′-trimethoxyphenyl)ethyl]thiophene-3-car-bonitrile ( 16 ). Further reaction with chloroformamidine hydrochloride converted 15 and 16 into 2,4-diamino-5-(2′-bromo-3′,4′,5′-trimethoxybenzyl)-4-methylthieno[2,3-d]pyrimidine ( 8a ) and 2,4-diamino-4-[2-(2′-bromo-3′,4′,5′-trimethoxyphenyl)ethylthieno[2,3-d]pyrimidine ( 12 ) respectively. Other analogues, obtained by reductive coupling of the appropriate 2,4-diaminoquinazoline-6(or 5)-carbonitriles with 2-bromo-3,4,5-trimethoxyaniline, were 2,4-diamino-6-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)-5-chloro-quinazoline ( 9a ), 2,4-diamino-5-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)quinazoline ( 10 ), and 2,4-diamino-6-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)quinazoline ( 11 ). Enzyme inhibition assays revealed that space-filling 2′-bromo substitution in this limited series of dicyclic 2,4-diaminopyrimidines with a 3′,4′,5′-trimethoxyphenyl side chain and a CH2, CH2CH2, or CH2NH bridge failed to improve species selectivity against either P. carinii or T. gondii dihydrofolate reductase relative to rat liver dihydrofolate reductase.  相似文献   

3.
Poly(phosphate ester)s, PPE 1a–d , were synthesized from polycondensation of methyl phosphorodichloridate (MPDC) with various bisphenols such as 4,4′-biphenol 1a , 4,4′-dihydroxyphenylether 1b , bis(4-hydroxyphenyl)methane 1c , and 3,3′-dimethyl-4,4′-dihy-droxybiphenyl 1d . PPE 2a–d with hexamethylene spacers were also obtained from poly-condensation of MPDC with 4,4′-bis(6-hydroxyhexyloxy)biphenyl 2a , 4,4′-di(6-hydroxyhexyloxy)phenyl ether 2b , bis[4-(6-hydroxyhexyloxy)phenyl]methane 2c , and 3,3′-dimethyl 4,4′-di(6-hydroxyhexyloxy)biphenyl 2d . The degree of crystallinity of PPE 1a–1d without hexamethylene spacer was 3.3–17.6%, whereas PPE 2a and PPE 2b which exhibit mesomorphic behavior were 20.1 and 18.6%, respectively. PPE 2a and PPE 2b show the mesophase at 139.6–195.5°C and 42.4–66.3°C, respectively. PPE 2c and PPE 2d were obtained as rubbery. From pyrolysis of PPE in air the temperature corresponding to 5% weight loss was found to be 322–408°C and 284–291°C for PPE 1 and PPE 2 , respectively. It was also found that PPE 2a was enzymatically degraded by phospholipase C. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The 7-deaza-2′-deoxy-7-methylguanosine ( 2b ) [9], which is the glycosylic-bond-stable, noncharged analogue of 2′-deoxy-7-methylguanosine ( 1b ), was incorporated in DNA by solid-phase synthesis. As building blocks, the protected phosphonatc 3a and the phosphoramidite 3b were prepared. The 7-methyl group of 2b stabilizes the B-DNA duplex compared to 7-deaza-2′-deoxyguanosine but does not induce a B-Z transition as it is known from compound 1b . The stabilization by the 7-deaza-7-methylguanine moiety is sequence-dependent, and the nearest-neighbor influence is different from that of 7-deazaguanine. Homooligonucleotides of 2b show sigmoidal melting indicating a highly ordered single-stranded structure. In general, Oligonucleotides containing 2b are very stable against hydrolysis with calf-spleen phosphodiesterase (CS-PDE, 5′ → 3′ exonuclease), while phosphodiester hydrolysis with snake-venom phosphodiesterase (SV-PDE, 3′ → 5′ exonuclease) is only slightly reduced.  相似文献   

5.
Model 3′-azido-3′-deoxynucleosides with thiol or vicinal dithiol substituents at C2′ or C5′ were synthesized to study reactions postulated to occur during inhibition of ribonucleotide reductases by 2′-azido-2′-deoxynucleotides. Esterification of 5′-(tert-butyldiphenylsilyl)-3′-azido-3′-deoxyadenosine and 3′-azido-3′-deoxythymidine (AZT) with 2,3-S-isopropylidene-2,3-dimercaptopropanoic acid or N-Boc-S-trityl-L-cysteine and deprotection gave 3′-azido-3′-deoxy-2′-O-(2,3-dimercaptopropanoyl or cysteinyl)adenosine and the 3′-azido-3′-deoxy-5′-O-(2,3-dimercaptopropanoyl or cysteinyl)thymidine analogs. Density functional calculations predicted that intramolecular reactions between generated thiyl radicals and an azido group on such model compounds would be exothermic by 33.6–41.2 kcal/mol and have low energy barriers of 10.4–13.5 kcal/mol. Reduction of the azido group occurred to give 3′-amino-3′-deoxythymidine, which was postulated to occur with thiyl radicals generated by treatment of 3′-azido-3′-deoxy-5′-O-(2,3-dimercaptopropanoyl)thymidine with 2,2′-azobis-(2-methyl-2-propionamidine) dihydrochloride. Gamma radiolysis of N2O-saturated aqueous solutions of AZT and cysteine produced 3′-amino-3′-deoxythymidine and thymine most likely by both radical and ionic processes.  相似文献   

6.
Oligoadenylates with 2′–5′ linkage were prepared in aqueous solution catalyzed by lead nitrate. Phosphorylation of the resulting triadenylate gave oligonucleotide inhibitor of protein synthesis, ppA2′p5′A2′p5′A.  相似文献   

7.
Diphosphine ligands that merge both axial and P‐centered chirality may exhibit superior or unique properties. Herein we report the diastereoselective introduction of P‐centered chirality at the 2‐position of the axially chiral 2′‐(phosphine oxide)‐1,1′‐binaphthyl scaffold. A lithium–bromide exchange reaction of a 2‐bromo‐2′‐(phosphine oxide)‐1,1′‐binaphthyl and treatment with dichlorophosphines followed by a nucleophilic organometallic reagent afforded unsymmetrical 2‐phosphino‐2′‐(phosphine oxide)‐1,1′‐binaphthyls with binaphthyl axial chirality and one or two phosphorus stereocenters with a variety of P substituents. The final diastereomerically pure 2,2′‐bisphosphino‐1,1′‐binaphthyls were obtained by reduction of the phosphine oxide directing group. Preliminary results demonstrated that a ligand with this hybrid chirality could induce higher stereoselectivity in the metal‐complex‐catalyzed asymmetric hydrogenation of a dialkyl ketone.  相似文献   

8.
Selected 2,6‐(disubstituted)purine 2′,3′‐didehydro‐2′,3′‐dideoxynucleosides and 2′,3′‐dideoxynucleosides were prepared and evaluated. Treatment of 5′‐protected ribonucleosides with phenoxythiocarbonyl chloride and 4‐(dimethylamino)pyridine, or under Schotten‐Baumann conditions, gave high yields of 2′,3′‐O‐thiono‐carbonates that underwent Corey‐Winter elimination. Treatment of unprotected ribonucleosides with α‐ace‐toxyisobutyryl bromide in “moist” acetonitrile gave trans 2′,3′‐bromohydrin acetate mixtures that underwent reductive elimination with zinc‐copper couple or zinc/acetic acid. Catalytic hydrogenation of the resulting 2′,3′‐enes gave 2′,3′‐dideoxynucleosides. Treatment of the 2‐amino‐6‐chloropurine and 6‐amino‐2‐fluoro‐purine derivatives with nucleophiles gave 2,6‐(disubstituted)purine 2′,3′‐dideoxynucleosides. 2′,3′‐Dideoxyguanosine and the 2‐amino‐6‐[amino ( 16d ), methoxy ( 16b ), ethoxy ( 16c ), and methylamino ( 16j )]purine 2′,3′‐dideoxynucleosides showed good anti‐hepatitis B activity with infected primary duck hepatocytes. Cytotoxic effects with selected analogues were evaluated in human T‐lymphoblastic and promyelocytic leukemia cell lines. The 2‐amino‐6‐fluoro derivative 16m was the most cytotoxic of the 2‐amino‐6‐(substituted)purine 2′,3′‐dideoxynucleosides, and 2‐fluoro‐2′,3′‐dideoxyadenosine ( 21a ) was the most cytotoxic compound. The order of efficiency of hydrolysis of the 6‐substituent from 2‐amino‐6‐(sub‐stituted)purine 2′,3′‐dideoxynucleosides (Vmax/Km) with adenosine deaminase from calf intestine was: 2‐amino‐6‐[amino ( 16d ) > methoxy ( 16b ) > ethoxy ( 16c )], all of which were ≤3% of the efficiency with adenosine. The 6‐methylamino derivative 16j , as well as 16b , 16c , and 16d were readily converted into 2′,3′‐dideoxyguanosine by duck cell supernatants.  相似文献   

9.
Saxitoxin (STX) and its analogues are potent voltage‐gated sodium channel blockers biosynthesized by freshwater cyanobacteria and marine dinoflagellates. We previously identified genetically predicted biosynthetic intermediates of STX at early stages, Int‐A′ and Int‐C′2, in these microorganisms. However, the mechanism to form the tricyclic skeleton of STX was unknown. To solve this problem, we screened for unidentified intermediates by analyzing the results from previous incorporation experiments with 15N‐labeled Int‐C′2. The presence of monohydroxy‐Int‐C′2 and possibly Int‐E′ was suggested, and 11‐hydroxy‐Int‐C′2 and Int‐E′ were identified from synthesized standards and LC‐MS. Furthermore, we observed that the hydroxy group at C11 of 11‐hydroxy‐Int‐C′2 was slowly replaced by CD3O in CD3OD. Based on this characteristic reactivity, we propose a possible mechanism to form the tricyclic skeleton of STX via a bicyclic intermediate from 11‐hydroxy‐Int‐C′2.  相似文献   

10.
The chemical and pharmacological properties of 2′‐substituted nicotines are poorly understood relative to other substituted nicotines. We developed a practical synthesis of the key intermediate (±)‐2′‐cyanonicotine using the Polonovski reaction. Alkylation of (±)‐2′‐cyanonicotine with Grignard reagents led to several 2′‐alkylnicotines; (±)‐2′‐aminomethylnicotine, (±)‐2′‐hydroxymethylnicotine, and (±)‐2′‐carbamoylnicotine were also synthesized. J. Heterocyclic Chem., (2012).  相似文献   

11.
合成了5-[N-(叔丁氧甲酰基)氨基]-1,3,3-三甲基-6′-硝基吲哚啉螺吡喃(BOCSPI)和5-[N-(叔丁氧甲酰基)氨基]-1,3,3-三甲基-6′-硝基-8′-甲氧基吲哚啉螺吡喃(BOCSPII)两种光致变色化合物,采用紫外-可见光谱法研究了其在溶液和以不同质量比掺杂在聚甲基丙烯酸甲酯(PMMA)膜中的光致变色性能.研究表明螺吡喃的高掺杂量不利于其开环和闭环态的转化,BOCSPII分子中的甲氧基有利于有色开环体的部花菁的稳定.  相似文献   

12.
A novel class of nucleosides with the C1, atom bonded to three hetero atoms was synthesized. 2′-Thia-2′,3′-dideoxycytidine was the pilot compound of this series. (±)-β-2′-Thia-1′,3′-dideoxycytidine ( 6 ) and (±)-α-2′-thia-2′,3′-dideoxycytidine ( 7 ) were synthesized from (±)-3-mercapto-1,2-propanediol. The synthesis of the enantiomerically pure 2′-thia-2′,3′-dideoxycytidines (α-D-form, β-D-form, α-1-form and β-L-form) from optically pure (S)-(2,2-dimethyl-1,3-dioxalan-yl)methyl p-toluenesulfonate ( 8 ) and its (R)-isomer 18 was also described. The preliminary biological results showed that (+)-β-D-2′-thia-2′,3′-dideoxycytidine ( 26 ) was the most active against human hepatitis B virus with an ED50 of 3 μM.  相似文献   

13.
Poly[5, 5′ - (dimethylsilylene) - 2, 2′ - dithienylene] (4a), poly[5, 5′ -(methylphenylsilylene)-2, 2′ -dithienylene] (4b), poly[5, 5′ -(1, 1, 2, 2-tetramethyldisilanylene)-2, 2′ -dithienylene] (4c), poly[5, 5′-(1, 2-dimethyl-1, 2-diphenyldisilanylene)-2, 2′ -dithienylene] (4d), poly[5, 5′-(1, 2, 2, 2-tetramethyldisilanylene)-2, 2′-dithienylene] (4e), and poly[5, 5′-(1, 1, 2, 2, 3, 3 - hexamethyltrisilanylene) - 2, 2′ -dithienylene] were synthesized by dehalogenative coupling of the respective bis(2-bromothienyl)- substituted mono, di- and tri-silanes with magnesium in the presence of a catalytic amount of a nickel(II) complex in 16–99% yields. The polymers thus obtained are light-yellow solids and soluble in common organic solvents. Molecular weights, Mw, of the polymers were measured and found to be 7800–35 000 by gel-permeation chromatography relative to polystyrene standards. The photochemical properties of the polymers (4a–4d) having silylene and disilanylene units were investigated. Only poly[5, 5′-(1, 2-dimethyl-1, 2-diphenyl-disilanylene)-2, 2′-dithienylene] (4d) was found to be photoactive, but the others were inactive. When the thin solid films prepared from the polymers 4a–4e by spin-coating were exposed to antimony(V) fluoride in vacuo, the films became conducting; their conductivities were determined to be 10?2 – 10?3 S cm?1 by the four-probe method.  相似文献   

14.
Photochromic 6‐bromomethyl‐6′‐methyl‐[2,2′‐bi‐1H‐indene]‐3,3′‐diethyl‐3,3′‐dihydroxy‐1,1′‐dione ( 2 ), 6,6′‐ bis(bromomethyl)‐[2,2′‐bi‐1H‐indene]‐3,3′‐diethyl‐3,3′‐dihydroxy‐1,1′‐dione ( 3 ) and 6,6′‐bis(dibromomethyl)‐[2,2′‐ bi‐1H‐indene]‐3,3′‐diethyl‐3,3′‐dihydroxy‐1,1′‐dione ( 4 ) have been synthesized from 6,6′‐dimethyl‐[2,2′‐bi‐1H‐ indene]‐3,3′‐diethyl‐3,3′‐dihydroxy‐1,1′‐dione ( 1 ). The single crystal of 4 was obtained and its crystal structure was analyzed. The results indicate that in crystal 4 , molecular arrangement is defective tightness compared with its precursor 1 . Besides, UV‐Vis absorption spectra in CH2Cl2 solution, photochromic and photomagnetic properties in solid state of 2 , 3 and 4 were also investigated. The results demonstrate that when the hydrogen atoms in the methyl group on the benzene rings of biindenylidenedione were substituted by bromines, its properties could be affected considerably.  相似文献   

15.
Diphosphine ligands that merge both axial and P-centered chirality may exhibit superior or unique properties. Herein we report the diastereoselective introduction of P-centered chirality at the 2-position of the axially chiral 2′-(phosphine oxide)-1,1′-binaphthyl scaffold. A lithium–bromide exchange reaction of a 2-bromo-2′-(phosphine oxide)-1,1′-binaphthyl and treatment with dichlorophosphines followed by a nucleophilic organometallic reagent afforded unsymmetrical 2-phosphino-2′-(phosphine oxide)-1,1′-binaphthyls with binaphthyl axial chirality and one or two phosphorus stereocenters with a variety of P substituents. The final diastereomerically pure 2,2′-bisphosphino-1,1′-binaphthyls were obtained by reduction of the phosphine oxide directing group. Preliminary results demonstrated that a ligand with this hybrid chirality could induce higher stereoselectivity in the metal-complex-catalyzed asymmetric hydrogenation of a dialkyl ketone.  相似文献   

16.
2,5‐Dibromo‐3‐(6′‐hexylpyridine‐2′‐yl)thiophene ( DBPyTh ) was synthesized by the Suzuki coupling reaction between two aromatic compounds followed by the bromination. The Grignard metathesis reaction of DBPyTh with isopropylmagnesium chloride proceeded in 85% conversion and the regioselective halogen–metal exchange at the 2‐position was confirmed. Namely, 5‐bromo‐2‐chloromagnesio‐3‐(6′‐hexylpyridine‐2′‐yl)thiophene and 2‐bromo‐5‐chloromagnesio‐3‐(6′‐hexylpyridine‐2′‐yl)thiophene were generated in 90:10 molar ratio. Subsequently, the Kumada coupling polymerization was carried out using 1,3‐bis(diphenylphosphinopropane)nickel(II) dichloride to obtain poly(3‐(6′‐hexylpyridine‐2′‐yl)thiophene) ( PolyPyTh ). The polymer molecular weight could be roughly controlled by the catalyst concentration and the molecular weight distribution ranged from 1.25 to 1.80. The gas chromatograph analysis indicated that 5‐bromo‐2‐chloromagnesio‐3‐(6′‐hexylpyridine‐2′‐yl)thiophene was preferentially polymerized in 90% conversion and the percentage of the head‐to‐tail content (regioregularity) was calculated to be 96%. The matrix‐assisted laser desorption/ionization time‐of‐fright mass spectrum indicated that both polymer chain ends were substituted with the hydrogen atom. The absorption maxima of polymer in CHCl3 and thin film were observed at 447 and 457 nm, respectively, which were blue‐shifted compared with poly(3‐(4′‐octylphenyl)thiophene). From the CV measurement of the polymer thin film, highest occupied molecular orbital (HOMO) (?5.31 eV) and lowest unoccupied molecular orbital (LUMO) (?3.76 eV) energy levels were calculated from the oxidation and reduction onset potentials, respectively, and the electrochemical band gap energy was determined to be 1.62 eV. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Mechanisms of hydrogen atom abstraction reactions of the sugar moiety of 2′‐deoxyguanosine with an OH radical were investigated using the B3LYP and BHandHLYP functionals of density functional theory and the second order Møller–Plesset Perturbation (MP2) theory in gas phase and aqueous media. The 6‐31+G* and AUG‐cc‐pVDZ basis sets were used. Gibbs free barrier energies and rate constants of the reactions in aqueous media suggest that an OH radical would abstract the hydrogen atoms of the sugar moiety of 2′‐deoxyguanosine in the following order of preference: H5′ ≈ H5″ > H3′ > H4′ > H1′ ≈ H2′ > H2″, the rate constant for H5′ abstraction being 103–105 times greater than that for H2″ at the different levels of theory. Relative stabilities of the different deoxyribose radicals are also discussed. The most and least favored hydrogen abstraction reactions found here are in agreement with experimental observation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
The 1′,2′-unsaturated 2′,3′-secoadenosine and 2′,3′-secouridine analogues were synthesized by the regioselective elimination of the corresponding 2′,3′-ditosylates, 2 and 18 , respectively, under basic conditions. The observed regioselectivity may be explained by the higher acidity and, hence, preferential elimination of the anomeric H–C(1′) in comparison to H? C(4′). The retained (tol-4-yl)sulfonyloxy group at C(3′) of 3 allowed the preparation of the 3′-azido, 3′-chloro, and 3′-hydroxy derivatives 5–7 by nucleophilic substitution. ZnBr2 in dry CH2Cl2 was found to be successful in the removal (85%) of the trityl group without any cleavage of the acid-sensitive, ketene-derived N,O-ketal function. In the uridine series, base-promoted regioselective elimination (→ 19 ), nucleophilic displacement of the tosyl group by azide (→ 20 ), and debenzylation of the protected N(3)-imide function gave 1′,2′-unsaturated 5′-O-trityl-3′-azido-secouridine derivative 21 . The same compound was also obtained by the elimination performed on 2,2′-anhydro-3′-azido-3′-azido-3′-deoxy-5′-O-2′,3′-secouridine ( 22 ) that reacted with KO(t-Bu) under opening of the oxazole ring and double-bond formation at C(1′).  相似文献   

19.
Five trimethylarsonioribosides were prepared from naturally occurring and synthetic dimethylarsinylribosides (arsenosugars) by reducing them with 2,3-dimercaptopropanol and quaternizing the resultant arsine with methyl iodide. The trimethylarsonioribosides prepared in this manner were the four novel compounds methyl 5-deoxy-5-trimethylarsonio-β-D -riboside (as the iodide), (2′R)-2′, 3′-dihydroxypropyl 5-deoxy-5-trimethylarsonio-β-D -riboside (as the formate), 3′-[(2″, 3″ -dihydroxypropyl)hydroxyphosphinyloxy] - 2′ -hydroxypropyl 5-deoxy-5-trimethylarsonio-β-D -riboside and 3-(5′-deoxy-5′-trimethylarsonio-β-D -ribosyloxy)-(2S)-2-hydro xypropanesulfonate, and the known (2′S)-2′-hydroxy-3′-(sulfooxy)propyl 5-deoxy-5-trimethylarsonio-β-D -riboside. They were synthesized to serve as standards for chromatographic analyses of arsenic compounds in marine samples and for investigations into the biotransformation of arsenic in marine organisms. NMR spectral and chromatographic data for the five trimethylarsonioribosides are presented and compared with those of their dimethylarsinyl analogues.  相似文献   

20.
J.A. Donnelly  H.J. Doran 《Tetrahedron》1975,31(15):1791-1794
2′-Acetoxy-6′-methoxychalcone dibromides reacted with ethanolic potassium acetate to form the cis and trans isomers of the corresponding 2′-acetoxy-α-bromochalcones. 2′-Hydroxychalcone dibromides reacted similarly but, in two cases, some ring closure also occurred. The stereoisomers of the α-bromo-2′-hydroxy-6′-methoxychalcones were cyclized with aqueous ethanolic potassium hydroxide. In keeping with their proposed intermediacy in the Emilewicz-von Kostanecki reaction, they yielded both flavone and aurone and aurone formation was related to the hydroxide concentration. The trans isomers more readily formed aurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号