首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microwave spectrum of 2-furylisocyanate has been obtained in the frequency region from 8 to 40 GHz. This spectrum is attributed to the ground state of the cis and trans configurations. The rotational constants for both ground vibrational states have been determined. Two sets of vibrational satellites are observed and assigned to the modes of C-N torsion and CNC bending. The microwave results show and MINDO/3 calculations confirm that the barrier between the cis and trans conformers is high and that the cis conformer is more stable than the trans by 3 kcal mol?1.  相似文献   

2.
Calculations on performic acid at the 4-31G level, with and without bond functions with complete geometry optimization, and at the (9, 5) level, with and without polarization functions and rigid rotation, all give no sign of a well in the potential energy curve for rotation about the O/O bond axis in the region of 50° – 90° ; and all but the unaugmented 4-31G basis set find the cis-cis planar conformer to be the most stable form. Calculations at the (9,5) level with rigid rotation find the energies of the other planar conformers, relative to the cis-cis conformer, to be 0.94, 1.50 and 14.80 kcal mol?1 for the trans-trans, cis-trans and trans-cis structures respectively. These energies and also that for the barrier separating the cis-cis and cis-trans conformers, 1–2 kcal mol?1, are discussed in relation to corresponding data for formic acid, hydrogen peroxide and several planar four heavy-atom molecules. Dipole moment calculations using the same basis sets would seem to favor a skew conformation as the most stable for performic acid, but comparisons between calculated and experimental values for formic acid and for hydrogen peroxide cast doubt on the validity of such results.  相似文献   

3.
The infrared (3500-20 cm−1) and Raman (3200-10 cm−1) spectra have been recorded for gaseous and solid fluoroacetone (1-fluoro-2-propanone), CH2FC(O)CH3. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. These data have been interpreted on the basis that the molecule exists predominantly in the cis (fluorine atom oriented cis to the methyl group) conformation in the vapor but for the liquid a second conformer having a trans orientation (fluorine atom oriented trans to the methyl group) is present. From a study of the Raman spectrum of the liquid at variable temperatures the trans conformation has been determined to be more stable than the cis form by 416 ± 54 cm−1 (1.19 ± 0.15 kcal mol−1) and is the only conformation present in the spectrum of the annealed solid. The asymmetric torsional fundamental for the more stable cis conformer has been observed in the far infrared spectrum of the gas at 69.6 cm−1 with six accompanying hot band transitions proceeding to lower frequency. The corresponding mode for the high energy trans conformer is extensively overlapped but is distinguishable at ∼65 cm−1. From these data the asymmetric torsional potential function governing internal rotation about the CC bond has been determined and the potential coefficients are: V1 = 675 ± 2, V2 = 991 ± 5, V3 = 74 ± 1 and V4 = 54 ± 2 cm−1. The cis to trans and trans to cis barriers are 1332 ± 5 and 731 ± 5 cm−1, respectively, with an enthalpy difference of 601 ± 8 cm−1 (1.72 ± 0.02 kcal mol−1). From ab initio calculations at the 3-21G and 6-31G* basis set levels optimized geometries for both the cis and trans conformers have been obtained and the potential surface governing internal rotation of the asymmetric top determined. The observed vibrational frequencies with their assignments for both the cis and trans conformers are compared to those from the ab initio calculations. All of these results are compared to the corresponding quantities for some similar molecules.  相似文献   

4.
The i.r. spectra of cis and trans methyl nitrite have been studied by trapping a thermal effusive molecular beam in an argon matrix. Variation of the beam source temperature allowed to distinguish between absorption bands of the thermodynamically more stable cis and of the less stable trans conformer. From the intensity behavior of selected trans/cis band pairs the enthalpy of conformer interconvesion was determined to be ΔH°(298 K) = 623(11) cal/mol. The experimental data are consistent with a statistical thermodynamic model thus supporting the assumption of sudden trapping of the conformer mixture in the matrix deposition process. In addition, the electronic energies and the optimum geometries of cis and trans methyl nitrite have been determined by ab initio gradient calculations. The difference of electronic energies ΔET is significantly larger than the value derived from the experimental enthalpy difference ΔH°(298 K).  相似文献   

5.
The far i.r. spectrum of gaseous n-butane obtained at 0.06 cm−1 resolution is reported between 80 and 230 cm−1. Several transitions for the asymmetric torsion of the trans conformer have been identified. Utilizing these data along with the previously reported asymmetric torsional transitions of the gauche conformer from Raman spectroscopic data, the potential function for the conformational change has been obtained. The determined potential parameters were found to be: V1 = 181, V2 = 148, V3 = 1154 and V6 = −33 cm−1. The s-trans to gauche, gauche to gauche, and gauche to s-trans barriers in cm−1 were found to be: 1315 (3.76 kcal/mol), 1090 (3.12 kcal/mol) and 1070 (3.06 kcal/mol), respectively. The potential functions obtained from these spectroscopic data are consistent with the trans to gauche energy difference, but not with the high trans/cis potential barrier suggested by recent ab initio calculations.  相似文献   

6.
The infrared (3500-20 cm−1) and Raman (3200-10 cm−1) spectra have been recorded for gaseous and solid chloroacetone (1-chloro-2-propanone), CH2ClC(O)CH3. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. These data have been interpreted on the basis that the molecule exists predominantly in a gauche conformation having a “near cis” structure of C1 symmetry (dih ClCCO=142°C) in the vapor but for the liquid a second conformer having a trans structure (chlorine atom oriented trans to the methyl group) with Cs point group symmetry is present. From a study of the Raman spectrum of the liquid at variable temperatures, the trans conformation has been determined to be more stable than the gauche form by 1042±203 cm−1 (2.98±0.6 kcal mol−1 and is the only conformer present in the spectrum of the annealed solid. From ab initio calculations at the 3-21G* and 6-31G* basis set levels optimized geometries for both the gauche and trans conformers have been obtained and the potential surfaces governing internal rotation of the symmetric and asymmetric rotors have been obtained. The observed vibrational frequencies and assignments to the fundamental vibrations for both the gauche and trans conformers are compared to those calculated with the 3-21G* basis set. The results are discussed and compared with the corresponding quantities obtained for some similar molecules.  相似文献   

7.
Ab initio quantum mechanical calculations using density functional (B3LYP) method and 6-311G** basis set have been performed on two cis and trans conformers of 2,4-diphenyl thietane dioxide (DPTD), 2,4-diphenyl thietane (DPT), 2,4-diphenyl azetidine (DPA) and 2,4-diphenyl oxetane (DPO). The calculated stability energy for cistrans isomerization in gas phase and in different solvents such as benzene, DMSO, water and methanol indicated that the cis conformer is more stable than trans in all above-mentioned compounds about 11–2 kcal mol?1. In the next step, a transition states for cistrans inter-conversion for all four-membered heterocycles (DPTD, DPT, DPA and DPO) were proposed in methanol as solvent. Thermodynamic functions such as standard enthalpies of isomerization (?Hºiso), standard entropy of isomerization (?Sºiso) and standard Gibbs free energy of isomerization (?Gºiso) for all studied compounds were also evaluated. The calculation showed that the conversion of trans to cis isomer is exothermic and spontaneous. In all calculations, solvent effects were considered using a polarized continuum model.  相似文献   

8.
The far-infrared spectra of gaseous and solid ethyl nitrate, CH3CH2ONO2, have been recorded from 500 to 50 cm−1. The fundamental asymmetric torsion of the trans conformer which has a heavy atom plane has been observed at 112.50 cm−1 with two excited states failing to lower frequencies, and the corresponding fundamental torsion of the gauche conformer was observed at 109.62 cm−1 with two excited states also falling to lower frequencies. The results of a variable temperature Raman study indicate that the trans conformer is more stable than the gauche conformer by 328 ± 96 cm−1 (938 ± 275 cal mol−1). An asymmetric potential function governing the internal rotation about the CH2O bond is reported which gives a trans to gauche barrier of 894 ± 15 cm−1 (2.56 ± 0.04 kcal mol−1) and a gauche to gauche barrier of 3063 ± 68 cm−1 (8.76 ± 0.20 kcal mol−1) with the trans conformer more stable by 220 ± 148 cm−1 (0.63 ± 0.42 kcal mol−1). Transitions arising from the symmetric CH3 and NO2 torsions are observed for both conformers, from which the threefold and twofold periodic barriers to internal rotation have been calculated. For the trans conformer the values are 1002 cm−1 (2.87 kcal mol−1) and 2355 ± 145 cm−1 (6.73 ± 0.42 kcal mol−1) and for the gauche conformer they are 981 cm−1 (2.81 kcal mol−1) and 2736 ± 632 cm−1 (7.82 ± 1.81 kcal mol−1) for the CH3 and NO2 rotors, respectively. These results are compared to the corresponding quantities for some similar molecules.  相似文献   

9.
We investigated the pressure effect on the conformational equilibria of glycinamide (GA) and 2-chloroacetamide (MCA) in aqueous solution by Raman spectroscopy. Scattering intensities in the CH2 scissoring mode of GA and the NH2 rocking mode of MCA in aqueous solution were decomposed into two component bands by ab initio MO calculations at the HF/6-31G(d,p) level. From the pressure dependence of the Raman band intensities, we determined the difference in the partial molar volume (PMV) between the cis and trans conformers of each for GA and MCA. The volume changes for the isomerization of the cis to trans conformer are ?(1.9 ± 0.3) and ?(1.5 ± 0.3) cm3-mol?1 for GA and MCA, respectively. The volume difference between the cis and trans conformers is due to the hydration effect, which seems to be mainly the result of local effects of solute–solvent interactions in both cases. This contribution is due to the influence of the solute–solvent interaction with water molecules on the PMV of the cis conformer being less than that of the trans conformer.  相似文献   

10.
Durig  J. R.  Shen  Shiyu  Drew  B. R.  Zhao  W. 《Structural chemistry》2000,11(4):213-228
Variable temperature (–60 to –100°C) studies of the infrared spectra (3500–400 cm–1) of cyclopropylmethyl ketone, c-C3H5C(CH3)O, dissolved in liquid xenon have been recorded. Utilizing several doublets due to the cis and near-trans conformers, the enthalpy difference has been determined to be 269 ± 26 cm–1 (3.22 ± 0.31 kJ/mol) with the cis conformer (oxygen atom cis to the three-membered ring) the more stable rotamer. From these data it is estimated that 79 ± 3% of the cis form is present at ambient temperature. Ab initio calculations have been carried out with different basis sets up to 6-311+G(2df,2pd) at the restricted Hartree–Fock and/or with full electron correlation by the perturbation method to second order (MP2) from which structural parameters and conformation stabilities have been determined. These calculations support the experimental conformational conclusions that the cis form is the more stable conformer. A complete vibrational assignment is given for the cis conformer, which is supported from a normal coordinate calculation utilizing ab initio force constants. Several of the fundamentals of the near-trans conformer have been identified and assigned. Adjusted r 0 structural parameters have been obtained from combined ab initio predicted values and previously reported rotational constants from the microwave investigation. The spectroscopic and theoretical results are compared to the corresponding quantities for some similar molecules.  相似文献   

11.
Conformational analysis of N-methyl-m-fluoroaniline has been performed by low resolution microwave spectroscopy. Two rotational isomers, corresponding in a near-planar configuration to the m-fluorine being either cis or trans with respect to the amino hydrogen, have been detected. The energy difference is found to be 270 ± 70 cal mol?1, the cis isomer being the more stable. Ab initio calculations indicate a barrier height for the internal rotation of the HNCH3 group around the Cph—N bond of 9.04 kcal mol?1.  相似文献   

12.
The vibrational spectra of ethyl vinyl ether in both the fluid and solid states have been recorded from 20 to 3500 cm?1. The 33 fundamental modes of vibration have been assigned. Three rotational isomers have been observed and their structures have been determined. The most stable conformer, s-cis/s-trans, is planar and of Cs symmetry. The two less stable rotamers, skew/s-trans and skew/gauche, are non-planar and of Ci molecular symmetry. The barrier to internal rotation of the methyl rotor has been determined for each conformation; these barriers are 3.43 kcal mol?1 (s-cis/s-trans), 3.35 kcal mol?1 (skew/s-trans) and 3.19 kcal mol?1 (skew/gauche). A potential function for each of the two asymmetric internal rotations has been calculated and barriers to conformer interconversion have been determined. From the asymmetric potential function calculations, ΔH, the enthalpy difference between the conformers, has been determined. The s-cis/s-trans conformer is 1.87 kcal mol?1 more stable than the skew/s-trans conformer; the skew/s-trans conformer is more stable than the skew/gauche conformer by 1.10 kcal mol?1. The energetics of conformer interconversion and methyl internal rotation have been described in terms of molecular geometry and non-bonded interactions. These results are compared to those found in other alkyl vinyl and dialkyl ethers.  相似文献   

13.
Geometric parameters, harmonic and anharmonic vibrational frequencies, conformer energy differences and barriers to internal rotation were obtained for dicyclopropyl ketone (DCPK) in the ground electronic state through MP2, DFT, CCSD and CCSD(T) calculations. VFPA was used to improve the estimations of conformer energy differences and heights of barriers to internal rotation. The ab initio calculations demonstrated that there are three stable conformations of DCPK: the cis–cis, the cis–trans and the gauche–gauche. The energy of the gauche–gauche conformer is noticeably higher than the energy of the two other conformers, so this conformer was not found experimentally. To study the conformational dynamics of the DCPK molecule, one- and two-dimensional sections of the potential energy surface corresponding to the rotations of the cyclopropyl groups were calculated. These sections were used to calculate torsion transition energies and vibrational wave functions in anharmonic approach. It was found that there is a strong coupling of large-amplitude torsion motions in the area of the cis–cis and gauche–gauche conformers.  相似文献   

14.
The Raman (3100–10 cm−1) and infrared (3100–30 cm−1) spectra of difluoroacetyl chloride, CHF2CClO, in the gas and solid phases have been recorded. Additionally, the Raman spectrum of the liquid with qualitative depolarization ratios has been obtained. From these data, a trans/gauche equilibrium is proposed in the gas and liquid phases, with the trans conformer (hydrogen atom eclipsing the oxygen atom and trans to the chlorine atom) the more stable form in the gas, but the gauche rotamer is more stable in the liquid and is the only form present in the annealed solid. From the study of the Raman spectrum of the gas at different temperatures, a value of 272 ± 115 cm−1 (778 ± 329 cal mol−1) was determined for ΔH, with the trans conformer the more stable form. Similar studies were carried out on the liquid and a value of 109 ± 9 cm−1 (312 ± 26 cal mol−1) was obtained for ΔH, but now the gauche conformer is the more stable form. A potential function for the conformational interchange has been determined with the following potential constants: V1 = 397 ± 23, V2 = −101 ± 5, V3 = 474 ± 3, V4 = −50 ± 3, and V6 = 10 ± 2 cm−1. This potential has the trans rotamer more stable by 179 ± 31 cm−1 (512 ± 89 cal mol−1) than the gauche conformer. A complete vibrational assignment is proposed for both conformers based on infrared band contours, Raman depolarization data, group frequencies and normal coordinate calculations. The experimental conformational stability, barriers to internal rotation, and fundamental vibrational frequencies are compared with those obtained from ab initio Hartree-Fock gradient calculations employing both the RHF/3-21G* and RHF/6-31G* basis sets, and to the corresponding quantities obtained for some similar molecules.  相似文献   

15.
The gas phase vibrational spectrum of methyl nitrite has been recorded over the range 4000-300 cm−1. All the fundamental modes of both the cis and trans conformers have been assigned. The complex rotational band envelopes arising from overlap of different vibrational transitions of the two conformers have been simulated as superpositions of intensity weighted vibration—rotation bands. The simulation process allowed estimates for relative magnitudes of different components of transition moments contributing to these band intensities. For the cis conformer, hot band progressions arising from the methyl and NO torsions have been identified for a number of fundamental modes. The simulation of the complete band contour in such cases yields information about Boltzmann factors for the torsional excited states from which reliable estimates of the torsional frequencies are obtained. The hot bands also provide accurate information about anharmonicity constants. For the trans conformer hot band progressions were found to be too complex because of nearly free internal rotations of the methyl group.A large number of combination modes have also been assigned. These assignnents yield estimates for the two torsional modes of the cis conformer which are in agreement with those obtained from relative intensities of hot bands. An estimate of the NO torsional frequency of the trans species has also been obtained from the combination modes.  相似文献   

16.
17.
The far i.r. (400-50 cm−1) spectra of gaseous and solid furfural (2-furancarboxaldehyde), c-C4H3O (CHO), have been recorded. Additionally, the Raman (3500-20 cm−1) spectra of the gas and liquid have been obtained at variable temperatures and the spectrum of the solid at 25 K. These data have been interpreted on the basis that the molecule exists in two different conformations in the fluid states and that the conformation which has the two oxygen atoms oriented in a trans configuration, OO-trans, is most stable (ΔH ⩽ 1 kcal/mol) in the gas; however, the conformation which has the two oxygen atoms oriented cis, OO-cis, is preferred in the liquid (ΔH = 1.07 ± 0.03 kcal/mol) and is the only rotamer present in the spectra of the solid. The asymmetric torsional fundamental for the OO-trans rotamer has been observed at 146.25 cm−1 in the far i.r. spectrum of the vapor and has five accompanying “hot bands”. The corresponding fundamental for the OO-cis rotamer has been observed at 127.86 cm−1 along with a “hot band” which occurs at 127.46 cm−1. From these data a cosine-based potential function governing internal rotation of the CHO top has been determined and the potential coefficients have values of V1 = 173 ± 2, V2 = 3112 ± 20, V3 = 113 ± 2 and V4 = −198 ± 6 cm−1. This potential is consistent with an enthalpy difference between the more stable OO-trans and high energy OO-cis conformers being 286 ± 24 cm−1 (818 ± 67 cal/mol) and a trans to cis barrier height of 3255 ± 20 cm−1 (9.31 ± 0.06 kcal/mol). These results are compared to the corresponding quantities obtained previously from microwave spectroscopy and theoretical methods.  相似文献   

18.
The microwave spectrum of trans-1-fluoro-2-butene, trans-(CH3)HCCH(CH2F), has been recorded in the region of 18.0–39.0 GHz. Both a-type R- and b-type Q-branch assignments have been made for the ground and first two vibrationally excited states of the asymmetric torsion for the gauche (anticlinal) conformer. The ground state rotational constants for this conformer are found to have the following values: A = 19,938.33±0.48, B = 2071.37±0.01, C = 2022.17±0.01 MHz. From an analysis of the internal rotational splittings of the Q-branches, the three-fold rotational barrier for the methyl group is determined to be 596±7 cm−1 (1.70±0.02 kcal/mol). From the Stark effect the dipole moment components for the gauche conformer were determined to be |μa| = 1.86±0.01, |μb| = 1.16±0.01, |μc| = 0.31±0.05, and |μt = 2.21±0.01 D. The fundamental asymmetric torsion for the cis (synclinal) conformer has been observed in the far-IR spectrum of the vapor at 123.95 cm−1 whereas that for the gauche conformer has been determined to occur at 82.8±5 cm−1 based on relative intensity measurements obtained from the microwave spectrum. From these data the potential function which governs the internal rotation of the asymmetric top has been determined and the following potential constants have been evaluated: V1 = −191±10, V2 = 598±10, V3 = 786±13, V4 = 59±5, and V6 = 79±5 cm−1. These data are consistent with the more stable conformer having the fluorine atom cis (synclinal) to the double bond and lying 300±33 cm−1 (858±94 cal/mol) lower in energy than the gauche rotamer. Utilizing ab initio calculations with the MP2/6-31G* basis set and the three rotational constants, r0 structural parameters are estimated. Also, the barriers to conformer interconversion have been calculated with the RHF/3-21G, RHF/6-31G*, and MP2/6-31G* basis sets. All of these results have been compared to the similar quantities of some corresponding molecules.  相似文献   

19.
The Raman (3200—10cm−1) and infrared (3200—50 cm−1) spectra of gaseous and solid 1-chloro-2-methylpropane and 1-bromo-methylpropane, as well as the Raman spectra of the liquids, have been recorded and assigned. The gauche asymmetric torsion of the 1-chloro-2-methylpropane molecules has been observed at 110 cm−1 in the Raman spectrum of the gas. For the 1-bromo-2-methylpropane molecule, both the trans and gauche asymmetric torsions have been observed at 106.70 and 103.94 cm−1, respectively, along with three additional transitions for the gauche conformer. From these data, the asymmetric potential function for the bromide molecules to V1 = —493 ±16, V2 = 595 ± 18, and V3 = 2006 ± 6 cm−1 with the trans conformer being more stable than the gauche conformer by 44 ± 20 cm−1. The trans form is found experimentally to be more stable in the liquid phase by 30 ± 14 cm−1 (83 ± 40 cal mol−1). From the relative intensities, in the Raman spectra, of the CCl stretches measured as a function of temperature, the gauche conformer of the chloride molecules to be 167 ± 71 cm−1 (479 ± 203 cal mol−1) more stable than the trans conformer in the gas phase, and 73 ± 10 cm−1 (208 ± 29 cal mol−1) more stable in the liquid phase. The methyl torsions for the gauche and trans conformers of both molecules are tentatively assigned in the gas phase and the barriers have been calculated. The results of this study are compared with previous studies on these molecules.  相似文献   

20.
The IR (50–3500 cm?1) and Raman (20–3500 cm?1) spectra have been recorded for gaseous and solid dimethylethylamine. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. Due to the fact that three distinct Raman lines disappear on going from the fluid phases to the solid state, it is concluded that the molecule exists as a mixture of the gauche and trans conformers in the fluid phases with the gauche conformer being more stable and the only one present in the spectra of the unannealed solid. From the temperature study of the Raman spectrum of the liquid a rough estimate of 3.9 kcal mol?1 has been obtained for ΔH. Relying mainly on group frequencies and relative intensities of the IR and Raman lines, a complete vibrational assignment is proposed for the gauche conformer. The potential functions for the three methyl rotors have been obtained, and the barriers to internal rotation for the two CH3 rotors attached to the nitrogen atom have been calculated to be 3.51 and 3.43 kcal mol?1, whereas the barrier for the CH3 rotor of the ethyl group has been calculated to be 3.71 kcal mol?1. The asymmetric torsional mode for the gauche conformer has been observed in both the IR and Raman spectra of the gas at 105 cm?1 with at least one hot band at a lower frequency. Since the corresponding mode has not been observed for the trans conformer, it is not possible to obtain the potential function for the asymmetric rotation although estimates on the magnitudes of some of the terms have been made. Significant changes occur in the low-frequency IR and Raman spectra of the solid with repeated annealing; several possible reasons for these changes are discussed and one possible explanation is that a conformational change is taking place in the solid where the trans form is stabilized by crystal packing forces. These results are compared to the corresponding quantities for some similar amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号