首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Using p,p'-dimethoxydiphenyldiazomethane (DMDM) as initiator, the polymerization of methyl methacrylate (MMA) in benzene or in bulk was carried out. The initial rate of polymerization, Rp, was found to be expressed by the following equation:

Rp = k[DMDM]0.53 [MMA]0.84

The polymerization was confirmed to proceed by a radical mechanism. The over-all activation energy for the polymerization in benzene was calculated as 19.3 kcal/mole. The rate of thermal decomposition of DMDM was also measured in benzene and the rate equation was obtained as follows:

kd (sec?1) = 1.0 × 1015 exp (?29.1 kcal/RT) (for 50-80°C)

Explanations of these observations are discussed in connection with those of the preceding papers.  相似文献   

2.
The effects of triphenyl phosphite (TPP) on the radical polymerization of styrene (St) and methyl methacrylate (MMA) initiated with α,α,-azobisisobutyronitrile (AIBN) was investigated at 50°C. The rate of polymerization of St and MMA at a constant concentration of TPP was found to be proportional to the monomer concentration and the square root of the initiator concentration. The rate of polymerization and the degree of polymerization of both St and MMA increased with increasing TPP concentration. The accelerating effect was shown to be due to the decrease of the termination rate constant kt with an increase in the viscosity of the polymerization systems. The chain transfer constant Ctr of TPP in St and MMA systems was determined from the degree of polymerization system. The Ctr of TPP was almost zero in the St system and 6.5 × 10?5 in the MMA system.  相似文献   

3.
Low concentrations (0.001–0.03M) of chlorine easily induce photopolymerization of MMA at 40°C. Kinetic data indicate that polymerization follows a radical mechanism involving complexation of monomer by the initiator and initiation takes place through radical generation during photodecomposition of the initiator-monomer complex. Termination appears to take place bimolecularly. The kp2/kt value for MMA polymerization at 40°C was found to be 0.83 × 10?2. Rates of chlorine-initiated photopolymerization were found to decrease in the order MMA, EMA ? VA, Sty > MA.  相似文献   

4.
Abstract

Methyl methacrylate (MMA) was found to be effectively polymerized with bis(cyclopentadienyl)titanium dichloride (CP2TiCl2) in a water-methanol mixture (1:1, v/v). The polymerization proceeded heterogeneously because the resulting poly(MMA) was insoluble in the system. The rate (R p) of the heterogenous polymerization was apparently expressed by R p = k[Cp2TiCl2]2[MMA]2˙5 (at 40°C). The resulting poly(MMA) was observed to consist of tetrahydrofuran (THF)-soluble and insoluble parts. In contrast with the usual radical poly(MMA), the THF-insoluble part was soluble in benzene, toluene, and chloroform but insoluble in polar solvents such as ethyl acetate, acetone, acetonitrile, dimethylformamide, and dimethylsulfoxide. The polymerization was found to be profoundly accelerated by irradiation with a fluorescent room lamp (15 W). The results of copolymerization of MMA and acrylonitrile indicated that the present polymerization proceeds through a radical mechanism.  相似文献   

5.
The atom transfer radical polymerization (ATRP) of MMA was examined using 3-bromo-3-methyl-butanone-2 (MBB) as an initiator in the presence of CuBr as catalyst and 2,6-bis[1-(2,6-diisopropylphenylimino)ethyl]pyridine (BPIEP) as a tridentate N-donor ligand. The effect of various other N-donor ligands including a bisoxazoline ligand, namely, 2,6-bis(4,4-dimethyl-2-oxazolin-2-yl) pyridine (dmPYBOX) was studied in ATRP and reverse ATRP of MMA. The ATRP of MMA in toluene at 90 °C using MBB as initiator was relatively slow in the case of bidentate and faster in the case of tridentate N-donor ligands. The apparent rate constant, kapp, with MBB as initiator and BPIEP as ligand in toluene (50%, v/v) at 90 °C was found to be 7.15 × 10−5 s−1. In addition, reverse ATRP of MMA in diphenylether at 70 °C using BPIEP/CuBr2 as catalyst system was very effective in reducing the reaction time from several hours to 24 h for polymerization of MMA.  相似文献   

6.
Pulsed laser polymerization (PLP) experiments were performed on the bulk polymerization of methyl methacrylate (MMA) at ?34 °C. The aim of this study was to investigate the polymer end groups formed during the photoinitiation process of MMA monomer using 2,2‐dimethoxy‐2‐phenylacetophenone (DMPA) and benzoin as initiators via matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. Analysis of the MALDI‐TOF spectra indicated that the two radical fragments generated upon pulsed laser irradiation show markedly different reactivity toward MMA: whereas the benzoyl fragment—common to both DMPA and benzoin—clearly participates in the initiation process, the acetal and benzyl alcohol fragments cannot be identified as end groups in the polymer. The complexity of the MALDI‐TOF spectrum strongly increased with increasing laser intensity, this effect being more pronounced in the case of benzoin. This indicates that a cleaner initiation process is at work when DMPA is used as the photoinitiator. In addition, the MALDI‐TOF spectra were analyzed to extract the propagation‐rate coefficient, kp, of MMA at ?34 °C. The obtained value of kp = 43.8 L mol?1 s?1 agrees well with corresponding numbers obtained via size exclusion chromatography (kp = 40.5 L mol?1 s?1). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 675–681, 2002; DOI 10.1002/pola.10150  相似文献   

7.
The effect of fullerene (C60) on the radical polymerization of methyl methacrylate (MMA) in benzene was studied kinetically and by means of ESR, where dimethyl 2,2′-azobis(isobutyrate) (MAIB) was used as initiator. The polymerization rate (Rp) and the molecular weight of resulting poly(MMA) decreased with increasing C60 concentration ((0–2.11) × 10−4 mol/L). The molecular weight of polymer tended to increase with time at higher C60 concentrations. Rp at 50°C in the presence of C60 (7.0 × 10−5 mol/L) was expressed by Rp = k[MAIB]0.5[MMA]1.25. The overall activation energy of polymerization at 7.0 × 10−5 mol/L of C60 concentration was calculated to be 23.2 kcal/mol. Persistent fullerene radicals were observed by ESR in the polymerization system. The concentration of fullerene radicals was found to increase linearly with time and then be saturated. The rate of fullerene radical formation increased with MAIB concentration. Thermal polymerization of styrene (St) in the presence of resulting poly(MMA) seemed to yield a starlike copolymer carrying poly(MMA) and poly(St) arms. The results (r1 = 0.53, r2 = 0.56) of copolymerization of MMA and St with MAIB at 60°C in the presence of C60 (7.15 × 10−5 mol/L) were similar to those (r1 = 0.46, r2 = 0.52) in the absence of C60. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2905–2912, 1998  相似文献   

8.
The decomposition rate constant (kd) of pinacolone diperoxide (PDP, 3,6‐diterbutyl‐3,6‐dimethyl‐1,2,4,5‐tetraoxacyclohexane) in methyl methacrylate (MMA) is determined by the kinetic study of its thermal decomposition at temperatures from 110 °C to 140 °C. The calculated kd values for PDP are higher than the corresponding values previously determined and reported for diethyl ketone triperoxide (DEKTP, 3,3,6,6,9,9‐hexaethyl‐1,2,4,5,7,8‐hexaoxacyclononane), for example, at 140 °C the kd for PDP is 75.4 × 10?5 s?1, while for DEKTP, it is 50.6 × 10?5 s?1. The difference in the kd between 130 °C and 140 °C indicates that the decomposition mechanism, sequential and/or concerted, is a function of temperature. The conformations of both initiators justify the higher kd for PDP in MMA than DEKTP, where one single conformer is found for PDP, whereas 212 conformers are found for DEKTP. Bulk polymerization of MMA using PDP as the initiator reveals also the presence of an induction period, such as in DEKTP case. This work provides mechanistic insights into the interactions among the bifunctional cyclic peroxide PDP and the MMA monomer and their influence on the polymerization kinetics. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 997–1007  相似文献   

9.
It was established that singlet electronic excited state of toluene is quenched by MMA /but is not quenched by PMMA/. The value of quenching rate constant kg=0.6×109 l.mol–1.s–1 indicates that the quenching is a diffusion controlled process. It is assumed that the excitation energy of toluene sensitizes the polymerization process of MMA. The increase of radioluminescence intensity and quantum yield of excitation energy transfer is the result of diminishing the quantity of MMA in the solution during polymerization time.  相似文献   

10.
Three hyperbranched multi-methacrylates (H20-MMA, H30-MMA and H40-MMA) have been synthesized by reacting Boltorn dendritic polyols with methacrylic anhydride and methacryloyl chloride. Their structures were characterized by FT-IR and NMR (1H and 13C) and molecular weights were measured by GPC. These multi-methacrylates (H-MMAs) mixed well with a variety of monomers such as acrylic acid (AA), methacrylic acid (MA), methyl methacrylate (MMA), 2-hydroxy-ethyl methacrylate (HEMA), tri(ethylene glycol) dimethdimethacrylate (TEGDMA), and bisphenol A glycidyl dimethacrylate (BisGMA). The initial studies on thermal polymerization activities of 10% of H-MMAs with AA, MA, and MMA showed that they gave higher polymerization enthalpy than the corresponding homopolymerization. The resulting materials showed one glass transition temperature, indicating a typical single-phase resin. The H-MMAs can effectively copolymerize with AA, MA, and MMA, with essentially no homopolymers produced, as indicated by acetone extraction studies. This indicated that the hyperbranched multi-methacrylates have the potential to be used as crosslinking agents or modifiers with a number of monomers to produce new thermosets.  相似文献   

11.
The kinetics of the polymerization of methyl methacrylate (MMA) in the presence of imidazole (Im), 2-methylimidazole (2MIm), or benz-imidazole (BIm) in tetrahydrofuran (THF) at 15–40°C was investigated by dilatometry. The rate of polymerization, Rp , was expressed by Rp = k[Im] [MMA]2, where k = 3.0 × 10?6 L2/(mol2 s) in THF at 30°C. The overall activation energy, Ea , was 6.9 kcal/mol for the Im system and 7.3 kcal/mol for the 2MIm system. The relation between logRp and 1 T was not linear for the BIm system. The polymers obtained were soluble in acetone, chloroform, benzene, and THF. The melting points of the polymers were in the range of 258–280°C. The 1H-NMR spectra indicated that the polymers were made up of about 58–72% of syndiotactic structure. The polymerization mechanism is discussed on the basis of these results.  相似文献   

12.
A simplified approximation method for the treatment of dead-end and high conversion polymerization kinetics is presented. The method is based on the treatment of dead-end polymerization first described by Tobolsky. In appropriate circumstances, by contrast with Tobolsky's method, this method provides measurements of kd and kp/kt1/2 without recourse to the measurement of the monomer conversion at infinite time. Kinetic studies of free radical polymerizations are normally confined to measurements of initial rates. At low conversions the predictions of the general mechanism for chain-growth polymerization involving initiation, propagation, and termination steps are generally obeyed. Thus the polymerization rate should be first order in the vinyl monomer and half-order in the initiator concentrations. At high conversions, however, large deviations which can be ascribed to various effects can occur; for example, (1) the effect of the increasing viscosity of the polymerization medium on the termination rate constant kt, and possibly also on the propagation rate constant kp, which have been considered by North1 and Cardenas and O'Driscoll,2 or (2) depletion of the initiator as the polymerization progresses. This depletion will occur in all polymerizations but its significance will depend on the magnitude of the rate constant for initiator decomposition (kd) and the period of polymerization. Appropriate conditions will lead to limiting monomer conversion even after infinite polymerization time; this phenomenon has been called dead-end polymerization by Tobolsky.3 Free radical polymerizations to high conversion are particularly important in the industrial context when initial kinetics are obviously inadequate. Suitable treatment of the conversion/time relationship is highly desirable. Senogles and Woolf4 have examined the polymerization of n-lauryl methacrylate at 60°C with 2-azobisisobutyronitrile as initiator under dead-end conditions. Here we propose a modification of Tobolsky's treatment of such polymerizations by using an approximation for the exponential decay in the initiator concentration. This method permits easy manipulation of the experimental data and the estimation of values for the kinetic parameters in favorable circumstances without recourse to the measurement of the conversion at infinite time or the evaluation of complicated functions of the monomer conversion. The method thus allows the duration of the laboratory experimentation to be significantly shortened and the complexity of the subsequent data analysis to be considerably reduced.  相似文献   

13.
A combined system of sodium tetraphenylborate (STPB) and p‐chlorobenzenediazonium tetrafluoroborate (CDF) serves as an effective initiator at low temperatures for acrylate monomers such as methyl methacrylate (MMA), ethyl acrylate, and di‐2‐ethylhexyl itaconate. The polymerization of MMA with the STPB/CDF system has been kinetically investigated in acetone. The polymerization shows a low overall activation energy of 60.3 kJ/mol. The polymerization rate (Rp) at 40 °C is given by Rp = k[STPB/CDF]0.5[MMA]1.6, when the molar ratio of STPB to CDF is kept constant at unity, suggesting that STPB and CDF form a complex with a large stability constant and play an important role in initiation and that MMA participates in the initiation process. From the results of a spin trapping study, p‐chlorophenyl and phenyl radicals are presumed to be generated in the polymerization system. A plausible initiation mechanism is proposed on the basis of kinetic and electron spin resonance results. A large solvent effect on the polymerization can be observed. The largest Rp value in dimethyl sulfoxide is 11 times the smallest value in N,N‐dimethylformamide. The copolymerization of MMA and styrene with the STPB/CDF system gives results somewhat different from those of conventional radical copolymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4206–4213, 2001  相似文献   

14.
Polymerization of methyl methacrylate (MMA) with aliphatic primary amines and carbon tetrachloride has been investigated in th dimethylsulfoxide medium by employing a dilatometric technique at 60°C. The rate of polymerization (Rp) has been evaluated under the conditions, [CCl4]/[amine] < 1 and > 1. The kinetic data indicate possible participation of the charge transfer complexes formed between the amine + CCl4 and the amine + MMA in the polymerization of MMA. In the absence of CCl4 or amine, no polymerization of MMA was observed under the present experimental conditions. The polymerization of MMA was inhibited by hydroquinone, indicating a free radical initiation. The energy of activation varied from 32 to 58 kJ mol?1.  相似文献   

15.
The free radical propagation rate coefficients of both Methyl Methacrylate (MMA) and Styrene (STY) have been measured using Pulsed-Laser Polymerization. The effect of solvents on the propagation rate coefficient, kp, is reported for several solvents, namely, bromobenzene, chlorobenzene, dimethyl sulphoxide, diethyl malonate, diethyl phthalate, benzonitrile, and benzyl alcohol, at 26.5°C. This preliminary data indicated that benzyl alcohol (BzA) had a large effect on the MMA propagation reaction. As earlier work indicated that N-methyl pyrrolidinone (NMP) would also have a large effect on the kp of MMA, Arrhenius parameters were evaluated for both MMA and STY at two different concentrations of monomer in BzA and NMP. BzA had a significant effect (at 95% confidence) increasing both the activation energy (Ea) and the preexponential factor (A) for MMA and STY. In NMP, a similar trend is observed for MMA polymerization; however, while a solvent effect on STY was observed, the effect on Ea and A was too small to discern with confidence. A series of additional experiments was performed to evaluate the influence of camphorsulfonic acid (CSA) as an additive in STY polymerization. There was no effect of CSA on kp, confirming that the strong effect CSA has on “living” radical polymerization of styrene does not originate from complexation leading to an accelerated propagation step but rather by altering the ratio of active-to-dormant chains in the reaction. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2311–2321, 1997  相似文献   

16.
Arene ruthenium(II) complexes bearing the cyclic amines RuCl26-p-cymene)(pyrrolidine)] ( 1 ), [RuCl26-p-cymene)(piperidine)] ( 2 ), and [RuCl26-p-cymene)(peridroazepine)] ( 3 ) were successfully synthesized. Complexes 1 – 3 were fully characterized by means of Fourier transform infrared, UV–visible, and NMR spectroscopy, elemental analysis, cyclic voltammetry, computational methods, and one of the complexes was further studied by single crystal X-ray crystallography. These compounds were evaluated as catalytic precursors for ring-opening metathesis polymerization (ROMP) of norbornene (NBE) and atom-transfer radical polymerization (ATRP) of methyl methacrylate (MMA). NBE polymerization via ROMP was evaluated using complexes 1 – 3 as precatalysts in the presence of ethyl diazoacetate (EDA) under different [NBE]/[EDA]/[Ru] ratios, temperatures (25 and 50°C), and reaction times (5–60 min). The highest yields of polyNBE were obtained with [NBE]/[EDA]/[Ru] = 5000/28/1 for 60 min at 50°C. MMA polymerization via ATRP was conducted using 1 – 3 as catalysts in the presence of ethyl-α-bromoisobutyrate (EBiB) as initiator. The catalytic tests were evaluated as a function of the reaction time using the initial molar ratio of [MMA]/[EBiB]/[Ru] = 1000/2/1 at 95°C. The increase in molecular weight as function of time indicates that complexes 1–3 were able to mediate the MMA polymerization with an acceptable rate and some level of control. Differences in the rate of polymerization were observed in the order 3 > 2 > 1 for the ROMP and ATRP.  相似文献   

17.
The vanadyl ionic complex VO(DMSO)5(ClO4)2 (I) exhibits high catalytic activity in the polymerization of 2-hydroxyethyl methacrylate (HEMA). The changes in the vanadium oxidation state during polymerization under argon and in the presence of oxygen were studied by EPR. Under aerobic conditions, the HEMA chain propagation radical was detected; this indicates the presence of a radical chain polymerization pathway caused by the ability of I to perform one-electron reduction of molecular O2. The radical generation rate is controlled by the initial concentration of I: its increase results in the formation of inactive species, presumably, μ-peroxo complexes Vv-O-O-Vv. It was shown by kinetic methods that the radical-chain pathway initiated by the reaction of I with O2 is not crucial in the HEMA polymerization.  相似文献   

18.

The synthesis of poly[(methyl methacrylate‐co‐hydroxyethyl methacrylate)‐b‐isobutylene‐b‐(methyl methacrylate‐co‐hydroxyethyl methacrylate)] P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different HEMA/MMA ratios has been accomplished by the combination of living cationic and anionic polymerizations. P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different compositions were prepared by a synthetic methodology involving the transformation from living cationic to anionic polymerization. First, 1,1‐diphenylethylene end‐functionalized PIB (DPE‐PIB‐DPE) was prepared by the reaction of living difunctional PIB and 1,4‐bis(1‐phenylethenyl)benzene (PDDPE), followed by the methylation of the resulting diphenyl carbenium ion with dimethylzinc (Zn(CH3)2). The DPE ends were quantitatively metalated with n‐butyllithium in tetrahydrofuran, and the resulting macroanion initiated the polymerization of methacrylates yielding triblock copolymers with high blocking efficiency. Microphase separation of the thus prepared triblock copolymers was evidenced by the two glass transitions at ?64 and +120°C observed by differential scanning calorimetry. These new block copolymers exhibit typical stress‐strain behavior of thermoplastic elastomers. Surface characterization of the samples was accomplished by angle‐resolved X‐ray photoelectron spectroscopy (XPS), which revealed that the surface is richer in PIB compared to the bulk. However, a substantial amount of P(MMA‐co‐HEMA) remains at the surface. The presence of hydroxyl functionality at the surface provides an opportunity for further modification.  相似文献   

19.
The influence of stereoregular poly(methyl methacrylate) (PMMA) as a polymer matrix on the initial rate of radical polymerization of methyl methacrylate (MMA) has been measured between ?11 and +60°C using a dilatometric technique. Under proper conditions an increase in the relative initial rate of template polymerization with respect to a blank polymerization was observed. Viscometric studies showed that the observed effect could be related to the extent of complex formation between the polymer matrix and the growing chain radical. The initial rate was dependent on tacticity and molecular weight of the matrix polymer, solvent type and polymerization temperature. The accelerating effect was most pronounced (a fivefold increase in rate) at the lowest polymerization temperature with the highest molecular weight isotactic PMMA as a matrix in a solvent like dimethylformamide (DMF), which is known to be a good medium for complex formation between isotactic and syndiotactic PMMA. The acceleration of the polymerization below 25°C appeared to be accompanied by a large decrease in the overall energy and entropy of activation. It is suggested that the observed template effects are mainly due to the stereoselection in the propagation step (lower activation entropy Δ Sp?) and the hindrance of segmental diffusion in the termination step (higher activation energy Δ Et?) of complexed growing chain radicals.  相似文献   

20.
Polymerization of methyl methacrylate (MMA) with triethanolamine (TEA) and carbon tetrachloride has been investigated in the presence of PdCl2 and in a dimethylsulfoxide (DMSO) medium by employing a dilatometric technique at 60°C. The rate of polymerization has been obtained under the conditions [CCl4]/[TEA] ≤ 1. The kinetic date indicate the possible participation of the charge‐transfer complex formed between the {amine–PdII} complex and CCl4 in the polymerization of MMA. In the absence of either CCl4 or amine, no polymerization of MMA was observed under the present experimental conditions. The rate of polymerization was inhibited by hydroquinone, suggesting a free‐radical initiation. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 171–177, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号