首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 730 毫秒
1.
Classical mechanics (CM), like quantum mechanics (QM), can have an operatorial formulation. This was pioneered by Koopman and von Neumann (KvN) in the 1930s. They basically formalized, via the introduction of a classical Hilbert space, earlier work of Liouville who had shown that the classical time evolution can take place via an operator, nowadays known as the Liouville operator. In this paper we study how to perform the coupling of a point particle to a gauge field in the KvN version of CM. So we basically implement at the classical operatorial level the analog of the minimal coupling of QM. We show that, differently than in QM, not only the momenta but also other variables have to be coupled to the gauge field. We also analyze in detail how the gauge invariance manifests itself in the Hilbert space of KvN and indicate the differences with QM. As an application of the KvN method we study the Landau problem proving that there are many more degeneracies at the classical operatorial level than at the quantum one. As a second example we go through the Aharonov-Bohm phenomenon showing that, at the quantum level, this phenomenon manifests its effects on the spectrum of the quantum Hamiltonian while at the classical level there is no effect whatsoever on the spectrum of the Liouville operator.  相似文献   

2.
The free induction decay (FID) of the transverse magnetization in a dipolar-coupled rigid lattice is a fundamental problem in magnetic resonance and in the theory of many-body systems. As it was shown earlier the FID shapes for the systems of classical magnetic moments and for quantum nuclear spin ones coincide if there are many nearly equivalent nearest neighbors n in a solid lattice. In this paper, we reduce a multispin density matrix of above system to a two-spin matrix. Then we obtain analytic expressions for the mutual information and the quantum and classical parts of correlations at the arbitrary spin quantum number S, in the high-temperature approximation. The time dependence of these functions is expressed via the derivative of the FID shape. To extract classical correlations for S > 1/2 we provide generalized POVM measurement (positive-operator-valued measure) using the basis of spin coherent states. We show that in every pair of spins the portion of quantum correlations changes from 1/2 to 1/(S + 1) when S is growing up, and quantum properties disappear completely only if S → ∞.  相似文献   

3.
Abstract

We discuss stationary solutions of the discrete nonlinear Schrödinger equation (DNSE) with a potential of the ? 4 type which is generically applicable to several quantum spin, electron and classical lattice systems. We show that there may arise chaotic spatial structures in the form of incommensurate or irregular quantum states. As a first (typical) example we consider a single electron which is strongly coupled with phonons on a 1D chain of atoms — the (Rashba)–Holstein polaron model. In the adiabatic approximation this system is conventionally described by the DNSE. Another relevant example is that of superconducting states in layered superconductors described by the same DNSE. Amongst many other applications the typical example for a classical lattice is a system of coupled nonlinear oscillators. We present the exact energy spectrum of this model in the strong coupling limit and the corresponding wave function. Using this as a starting point we go on to calculate the wave function for moderate coupling and find that the energy eigenvalue of these structures of the wave function is in exquisite agreement with the exact strong coupling result. This procedure allows us to obtain (numerically) exact solutions of the DNSE directly. When applied to our typical example we find that the wave function of an electron on a deformable lattice (and other quantum or classical discrete systems) may exhibit incommensurate and irregular structures. These states are analogous to the periodic, quasiperiodic and chaotic structures found in classical chaotic dynamics.  相似文献   

4.
Starting from the classical Liouville theory, we study its quantum theory through canonical quantization. We find that if the Poisson bracket relations between two vectors are,dominated by the classical r-matrix in the classical case, their quantum analogue is replaced by the exchange relations dominated by the quantum R-matrix. The quantum group structure in the quantum LiouviUe theory is studied and the central charge of the quantum Liouville theory is also obtained.  相似文献   

5.
Exact, closed form results are given expressing the quantum Liouville field theory in terms of a canonical free pseudoscalar field. The classical conformal transformation properties and a Bäcklund transformation of the Liouville model are briefly reviewed and then developed into explicit operator statements for the quantum theory. This development leads to exact expressions for the basic operator functions of the Liouville field: ?μΦ, and e. An operator product analysis is then used to construct the Liouville energy-momentum tensor operator, which is shown to be equal to that of a free pseudoscalar field. Dynamical consequences of this equivalence are discussed, including the relation between the Liouville and free field energy eigenstates. Liouville correlation functions are partially analyzed, and remaining open questions are discussed.  相似文献   

6.
7.
The Toda field is a multicomponent field in two space-time dimensions satisfying a generalisation of the Liouville equation ?2? + exp ? = 0. We define the quantum field theory, and solve for the fields in terms of their initial values on a forward light-cone, demonstrating that our solution is regular. We give an explicit result for the Liouville equation which is the quantum version of the well-known classical solution. We also discuss the energy-momentum spectrum, and the conformal properties of the theory.  相似文献   

8.
The quantum anisotropic antiferromagnetic Heisenberg model with single ion anisotropy, spin S=1 and up to the next-next-nearest neighbor coupling (the J1J2J3 model) on a square lattice, is studied using the bond-operator formalism in a mean field approximation. The quantum phase transitions at zero temperature are obtained. The model features a complex T=0 phase diagram, whose ordering vector is subject to quantum corrections with respect to the classical limit. The phase diagram shows a quantum paramagnetic phase situated among Neél, spiral and collinear states.  相似文献   

9.
Using Feynman path integral technique estimations of the ground state energy have been found for a conduction electron interacting with order parameter fluctuations near quantum critical points. In some cases only singular perturbation theory in the coupling constant emerges for the electron ground state energy. It is shown that an autolocalized state (quantum fluctuon) can be formed and its characteristics have been calculated depending on critical exponents for both weak and strong coupling regimes. The concept of fluctuon is considered also for the classical critical point (at finite temperatures) and the difference between quantum and classical cases has been investigated. It is shown that, whereas the quantum fluctuon energy is connected with a true boundary of the energy spectrum, for classical fluctuon it is just a saddle-point solution for the chemical potential in the exponential density of states fluctuation tail.  相似文献   

10.
11.
In this paper we present the results of an investigation of the finite self-consistent field theory of electrodynamics applied earlier to the calculation of the Lamb shift in hydrogen (Sachs & Schwebel, 1961; Sachs, 1972), now applied to the problem of the Lamb shift in the low-lying states of Helium. We construct the covariant nonlinear field equations of this theory for Helium, from the Lagrangian formalism. In the linear approximation, the Hamiltonian associated with this field theory for the two-electron atom is set up. It is equivalent to the Breit Hamiltonian plus two extra terms. This generalization is a direct consequence of the two-component spinor formalism of the factorization of the Maxwell theory of electromagnetism that is contained in this theory of electrodynamics (Sachs, 1971). Thus, the energy spectrum predicted for the Helium atom is the spectrum predicted by the Breit Hamiltonian, shifted by amounts in the different energy states according to the effects of the extra terms in the Hamiltonian. The latter can be associated with the corrections to the Helium spectrum that are conventionally attributed to the Lamb shift. The level shifts for the 11 S and 23 S states are calculated using the Foldy-Wouthuysen transformation, with the generalization of Charplvy for the two-electron atom. The results are found to be in close agreement with the experimental values for the energy shifts not predicted by the Dirac theory, and with the theoretical values predicted by quantum electrodynamics.  相似文献   

12.
Two independent weak-coupling expansions are developed for the Liouville quantum field theory on a circle. In the first, the coupling of the nonzero modes is treated as a perturbation on the exact solution to the zero-mode problem (quantum mechanics with an exponential potential). The second approach is a weak-coupling approximation to an explicit operator solution which expresses various Liouville operators as functions of a free massless field using a Bäcklund transformation. It is shown that the free state space associated with the latter solution must be restricted to the sector which is odd with respect to a type of “parity.” Various matrix elements are computed to order g10 using both approaches, yielding identical results.  相似文献   

13.
If a quantum field is enclosed in a spatial box of finite volume, its mass spectrum depends on the box size L. For field theories in the continuum Lüscher has shown to all orders in perturbation theory that for large L this dependence is related to certain scattering amplitudes of the infinite volume theory. We derived the corresponding relations for lattice field theories. Assuming their validity for lattice gauge theory outside the perturbative region the magnitude of finite size effects on the spectrum is determined by a glueball coupling constant. This quantity is estimated by strong coupling methods.  相似文献   

14.
This is the third in a series of three papers on quantum billiards with elliptic and ellipsoidal boundaries. In the present paper we show that the integrable billiard inside a prolate ellipsoid has an isolated singular point in its bifurcation diagram and, therefore, exhibits classical and quantum monodromy. We derive the monodromy matrix from the requirement of smoothness for the action variables for zero angular momentum. The smoothing procedure is illustrated in terms of energy surfaces in action space including the corresponding smooth frequency map. The spectrum of the quantum billiard is computed numerically and the expected change in the basis of the lattice of quantum states is found. The monodromy is already present in the corresponding two-dimensional billiard map. However, the full three degrees of freedom billiard is considered as the system of greater relevance to physics. Therefore, the monodromy is discussed as a truly three-dimensional effect.  相似文献   

15.
A class of punctured constant curvature Riemann surfaces, with boundary conditions similar to those of the Poincaré half plane, is constructed. It is shown to describe the scattering of particle-like objects in two Euclidian dimensions. The associated time delays and classical phase shifts are introduced and connected to the behaviour of the surfaces at their punctures. For each such surface, we conjecture that the time delays are partial derivatives of the phase shift. This type of relationship, already known to be correct in other scattering problems, leads to a general integrability condition concerning the behaviour of the metric in the neighbourhood of the punctures. The time delays are explicitly computed for three punctures, and the conjecture is verified. The result, reexpressed as a product of Riemann zeta-functions, exhibits an intringuing number-theoretic structure: a p-adic product formula holds and one of Ramanujan's identities applies. An ansatz is given for the corresponding exact quantum S-matrix. It is such that the integrability condition is replaced by a finite difference relation only involving the exact spectrum already derived, in the associated Liouville field theory, by Gervais and Neveu.  相似文献   

16.
17.
We explore the ground states and quantum phase transitions of two-dimensional, spin S=1/2, antiferromagnets by generalizing lattice models and duality transforms introduced by Sachdev and Jalabert (1990, Mod. Phys. Lett. B4, 1043). The minimal model for square lattice antiferromagnets is a lattice discretization of the quantum nonlinear sigma model, along with Berry phases which impose quantization of spin. With full SU(2) spin rotation invariance, we find a magnetically ordered ground state with Néel order at weak coupling and a confining paramagnetic ground state with bond charge (e.g., spin Peierls) order at strong coupling. We study the mechanisms by which these two states are connected in intermediate coupling. We extend the minimal model to study different routes to fractionalization and deconfinement in the ground state, and also generalize it to cases with a uniaxial anisotropy (the spin symmetry groups is then U(1)). For the latter systems, fractionalization can appear by the pairing of vortices in the staggered spin order in the easy-plane; however, we argue that this route does not survive the restoration of SU(2) spin symmetry. For SU(2) invariant systems we study a separate route to fractionalization associated with the Higgs phase of a complex boson measuring noncollinear, spiral spin correlations: we present phase diagrams displaying competition between magnetic order, bond charge order, and fractionalization, and discuss the nature of the quantum transitions between the various states. A strong check on our methods is provided by their application to S=1/2 frustrated antiferromagnets in one dimension: here, our results are in complete accord with those obtained by bosonization and by the solution of integrable models.  相似文献   

18.
Quantum groups play the role of symmetries of integrable theories in two dimensions. They may be detected on the classical level as Poisson-Lie symmetries of the corresponding phase spaces. We discuss specifically the Wess-Zumino-Witten conformally invariant quantum field model combining two chiral parts which describe the left- and right-moving degrees of freedom. On one hand, the quantum group plays the role of the symmetry of the chiral components of the theory. On the other hand, the model admits a lattice regularization (in Minkowski space) in which the current algebra symmetry of the theory also becomes quantum, providing the simplest example of a quantum group symmetry coupling space-time and internal degrees of freedom. We develop a free field approach to the representation theory of the lattice sl (2)-based current algebra and show how to use it to rigorously construct an exact solution of the quantum SL (2) WZW model on lattice.  相似文献   

19.
20.
《Physics letters. A》2001,286(4):261-276
An analytical solution up to the second order in the coupling constant λ is obtained for a classical quartic anharmonic oscillator by using Taylor series method. Our solution yields, as a special instance, the corresponding results obtained by using Laplace transform. With the help of correspondence principle, the classical solution is used to obtain the solution corresponding to a quantum quartic anharmonic oscillator. In the weak coupling regime (i.e., anharmonic constant λ⪡1), the so-called secular terms in classical and quantum solutions are tucked in (summed up) to avoid the nonconvergence. Both the classical and quantum solutions are used to obtain the frequency shifts of the quartic oscillators. It is found that these frequency shifts coincide exactly with those of the earlier results obtained by other methods. From the quantum field theoretic point of view, our solution exhibits the so-called Lamb shift. As an application of the solution for the quantum oscillator, we examine the possibility of getting squeezed states out of the input coherent light interacting with a nonlinear medium of inversion symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号