首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under dynamic conditions of the charged Langmuir monolayer deposition onto a substrate surface, ion concentration and electric potential profiles are induced in the subphase around the three-phase contact line. Such local changes in the subphase influence the deposition process, particularly the monolayer adhesion work and the maximum deposition rate. If indifferent electrolytes (not interacting chemically with interfacial groups) are present in the solutions, they can affect electric potential distributions and therefore the monolayer charge and the deposition process as a whole. With increasing deposition rate, the indifferent electrolyte counterions replace gradually the potential-determining counterions in a close vicinity to the contact line. This leads to increasing monolayer ionization and increasing electrostatic repulsion between the monolayer and substrate. When the deposition rate approaches the critical one, the charge of the monolayer increases dramatically and the stationary monolayer deposition becomes impossible. Such a significant increase of the monolayer charge is not observed in the absence of indifferent electrolytes.  相似文献   

2.
The review summarizes the results of the recent studies of the electrokinetic relaxation process within the meniscus region during the deposition of charged Langmuir monolayers. Such electrokinetic relaxation is the consequence of the initial misbalance of partial ion fluxes within a small region near the contact line, where the diffuse parts of electric double layers, formed at the monolayer and the substrate surface, overlap. The concentration polarization within the solution near the three-phase contact line should lead to long-term relaxations of the meniscus after beginning and stopping the deposition process, to changes of the ionic composition within the deposited films, to change of the interaction of the monolayer with the substrate, and to dependence of the maximum deposition rate on the subphase composition.  相似文献   

3.
The Langmuir monolayer at an air–water interface shows remarkably different surface pressure (π)–area (A) isotherm, when measured with the surface normal of a Wilhelmy plate parallel or perpendicular to the direction of compression of the monolayer. Such difference arises due to difference in stress exerted by the monolayer on the plate in different direction. In this article, we report the effect of changing the direction of substrate normal with respect to the compression of the monolayer during Langmuir–Blodgett (LB) film deposition on the morphology of the films. The morphology of the LB film of stearic acid is studied using an atomic force microscope. The morphology of the LB films is found to be different due to difference in the stress in different directions. The role of such surface morphology on the alignment of a nematic liquid crystal (LC) in LC cells is studied. The granular texture of LB films of stearic acid supports the homogeneous alignment of the LC whereas the uniform texture supports the homeotropic alignment of the LC.  相似文献   

4.
A single-chain fatty acid methyl ester, racemic anti-3-fluoro-2-hydroxyeicosanoic acid methyl ester (beta-FHE), forms an unconventional air-stable interdigitated bilayer at the air-water interface. The interdigitated bilayer transferred onto solid substrate by the Langmuir-Blodgett (LB) technique keeps air-stable without any substrate modification or protein inclusion. There are two visible plateaus in the surface pressure-molecular area (pi-A) isotherms of beta-FHE Langmuir film during continuous compression. According to Brewster angle microscopy (BAM), grazing incidence X-ray diffraction (GIXD), X-ray reflectivity (XR), fluorescence microscopy (FM), and atomic force microscopy (AFM) measurements, the first plateau is attributed to the coexistence of liquid expanded (LE) and liquid condensed (LC) phases in the monolayer, while the second plateau is interpreted as the transition from LC monolayer to interdigitated bilayer. The coupling between tilt and curvature associated with the packing mismatch between headgroup and chain gives rise to buckling and folding of the monolayer, leading to the transition of the LC monolayer to a bilayer structure. The diffusion-limited aggregation (DLA) model is applied to describe the formation of the fractal structures of the bilayer as observed in the second plateau. In addition, the transition between monolayer and bilayer is reversible. The present works are interesting for understanding biological processes, for example, the behavior of lung surfactants.  相似文献   

5.
Self-assembled monolayers (SAMs) are a unique approach for the liquid crystal (LC) alignment in electro-optical applications such as displays. Herein, a new methodology for photo-switchable LC alignment layer using an azosilane monomer and LC mixture system in the absence of any other foreign alignment layer is presented. The azosilane monomer spontaneously separated from the host LCs, and formed a stable monolayer network on the substrate surface. Data from X-ray photo-electron spectroscopy (XPS), spectroscopic elipsometry (SE), water contact angle and LC alignment studies confirmed that, in the azosilane and LC mixture system, azosilane makes an in situ SAM that is capable of photo-switchable LC alignment layer on glass and indium tin oxide (ITO) substrates. The LCs are aligned with respect to change in the photo-isomerisation of the azo molecule.  相似文献   

6.
Using Gibbs method of dividing surfaces, the condition of equilibrium of a sessile drop on a flat non-deformable solid substrate is investigated. The dependence of the line tension on the curvature radius of the dividing three-phase contact line is found. It has been derived a relationship between the partial derivative of the line tension with respect to the curvature radius of the three-phase contact line (which stands in the generalized Young equation) and the total derivative of the line tension with respect to the same radius along the equilibrium states. Various approximated formulas of the generalized Young equation used in the literature are analyzed.  相似文献   

7.
The effect that nanoparticles play in the spreading of nanofluids dynamically wetting and dewetting solid substrates is investigated experimentally, using 'drop shape' analysis technique to analyse aluminium-ethanol contact lines advancing and receding over hydrophobic Teflon-AF coated substrates. Results obtained from the advancing/receding contact line analysis show that the nanoparticles in the vicinity of the three-phase contact line enhance the dynamic wetting behaviour of aluminium-ethanol nanofluids for concentrations up to approximately 1% concentration by weight. Two mechanisms were identified as a potential reason for the observed enhancement in spreading of nanofluids: structural disjoining pressure and friction reduction due to nanoparticle adsorption on the solid surface. The observed 'lubricating effect' that the nanoparticles seem to be inducing is similar to the 'superspreading' effect for surfactant solutions spreading on hydrophobic surfaces, up to a concentration (weight) of approximately 1%, could be a result of the predicted enhanced wetting behaviour. Indeed, Trokhymchuk et al. [Langmuir, 2001, 17, 4940] observed a solid-like ordering of nanoparticles in the vicinity of the three-phase contact line, leading to an increased pressure in the fluid 'wedge'. This increased pressure leads to a pressure gradient which causes the nanofluids to exhibit enhanced wetting characteristics. Another possible cause for the observed increase in advancing/receding contact line velocity could be deposition of nanoparticles on the solid surface in the vicinity of the three-phase contact line resulting in the nanofluid effectively advancing over aluminium rather than Teflon-AF, or the contact line 'rolling' over nanoparticles at the three-phase contact line due to sphericity of nanoparticles. For either of these to be the case, the nanoparticle effect at the three-phase contact line would have to be enhanced for the lower concentration in the same way that it would have to be for the increased pressure in the fluid 'wedge'.  相似文献   

8.
Polyhedral oligomeric silesquioxanes (POSS) with eight polyether substituents were mixed with the liquid crystal (LC) 4-octyloxy-4′-cyanobiphenyl and spread at the air/water interface. The surface pressure-area and surface potential-area isotherms were recorded for different weight ratios of both components. The obtained results showed that POSS molecules had beneficial influence on LC monolayer improving its stability and rigidity. Moreover, it was found that some LC–POSS mixtures collapse reversibly and form multilayer films on the top of LC monolayer. On the other hand, interfacial dilatational and shear rheology indicated decrease of elasticity of the films after mixing. Brewster angle microscopy revealed multilayer structure of the condensed film and formation of net-like structures in the expanded film. These films were successfully transferred on solid substrates using the Langmuir–Blodgett technique. The scanning electron microscopy images confirmed the film deposition and formation of networks by POSS–LC mixtures. These findings may be useful in the fabrication of electronic devices based on LCs.  相似文献   

9.
Dipalmitoyl phosphatidic acid (DPPA) monolayers at the air-water interface were studied from surface pressure (Pi)-area (A) isotherms and at the microscopic level with Brewster angle microscopy (BAM) under different conditions of temperature, pH, and ionic strength. BAM images were recorded simultaneously with Pi-A isotherms during the monolayer compression-expansion cycles. DPPA monolayers show a structural polymorphism from the liquid-expanded (LE)-liquid-condensed (LC) transition region at lower surface pressures toward liquid-condensed and solid (S) structures at higher surface pressures. An increase in temperature, pH, or ionic strength provokes an expansion in the monolayer structure. The results obtained from the Pi-A measurements are confirmed by the monolayer topography and relative reflectivity. The measurements of relative reflectivity upon monolayer compression showed an increase in relative monolayer thickness of 1.25 and 3.3 times throughout the full monolayer compression from the liquid-expanded to the liquid-condensed and solid states, respectively.  相似文献   

10.
The paper presents the results of studies of the sorption of ethanol from the gas phase by a monomolecular arachic acid layer deposited by the Langmuir-Blodgett method onto the surface of a nickel substrate. Studies were performed using a working model based on a field-effect transistor. Sorption was accompanied by changes in the potential of the nickel substrate. The dependence of transistor current I D on time t was related to the conditions of Langmuir-Blodgett film deposition. The value and characteristic time of signal variations as the atmosphere changed depended on the pressure of monolayer deposition and, therefore, monolayer phase state on the surface of water when it was transferred to the solid substrate. The experimental I D (t) dependence was compared with the time dependence of arachic monolayer surface coverage with sorbent molecules calculated by the Langmuir model. The conclusion was drawn that the model was capable of describing the sorption of ethanol vapor by the Langmuir-Blodgett arachic acid monolayer at low partial pressures p ≤ 0.05p 0, where p 0 is the saturated vapor pressure.  相似文献   

11.
We report the organization of polymer-dispersed liquid crystals (PDLCs) into ordered concentric rings over large areas by drying a drop of bound PDLC toluene solution (i.e., confined between a spherical lens and an indium tin oxide (ITO)-coated glass substrate; sphere-on-ITOgeometry). The formation of regular ring-like deposits was a direct consequence of controlled "stick-slip" cycles of three-phase contact line during the course of solvent evaporation, which was effectively regulated through the use of the sphere-on-ITO geometry. This simple approach based on controlled evaporative organization may provide a new means of processing polymer/LC mixture to produce ordered surface patterns in one step, where microscopic LCs are dispersed within the polymer matrix.  相似文献   

12.
The chirality of phospholipids is known to be of importance to the interactions of the cellmembrane with proteins and other substances passing through it. Langmuir monolayersat the air/water interface provide unique models for stUdying chirality-dependentintermolecular interactions in highly organized tWo-dimensional systems'-'. Our recentwork confirmed that long chain N - (O, O - d ialkyl)pho sphoam in o ac ids c cul d form b if ayermembrane vesicles in water4. This suggests that perhaps th…  相似文献   

13.
Micropatterned phospholipid bilayers on solid substrates offer an attractive platform for various applications, such as high throughput drug screening. We have previously developed a photopolymerization-based methodology for generating micropatterned bilayers composed of polymerized and fluid lipid bilayers. Lithographic photopolymerization of a diacetylene-containing phospholipid (DiynePC) allowed facile fabrication of compartmentalized arrays of fluid lipid membranes. Herein, we report on a key experimental parameter that significantly influences the homogeneity and quality of the fabricated polymeric bilayers, namely the temperature at which monolayers of monomeric DiynePC were formed on the water surface and transferred onto solid substrates by the Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) technique. Using fluorescence microscopy and atomic force microscopy, it was found that polymerized bilayers were homogeneous, if bilayers of DiynePC were prepared below the triple point temperature (ca. 20 degrees C) of the monolayer, where a direct transition from the gaseous state to the liquid condensed state occurred. Bilayers prepared above this temperature had a markedly increased number of crack-like line defects. The differences were attributed to the domain structures in the monolayer that were transferred from the water surface to the substrate. Domain size, rather than the molecular packing in each domain, was concluded to play a critical role in the formation of defects. The spontaneous curvature and area changes of bilayers were postulated to cause destabilization and detachment of the films from the substrate upon polymerization. Our present results highlight the importance of controlling the domain structures for the homogeneity of polymerized bilayers required in technological applications.  相似文献   

14.
The deposition and the isothermal crystallization kinetics of thin amorphous solid water (ASW) films on both Ru(0001) and CO-precovered Ru(0001) have been investigated in real time by simultaneously employing helium atom scattering, infrared reflection absorption spectroscopy, and isothermal temperature-programmed desorption. During ASW deposition, the interaction between water and the substrate depends critically on the amount of preadsorbed CO. However, the mechanism and kinetics of the crystallization of approximately 50 layers thick ASW film were found to be independent of the amount of preadsorbed CO. We demonstrate that crystallization occurs through random nucleation events in the bulk of the material, followed by homogeneous growth, for solid water on both substrates. The morphological change involving the formation of three-dimensional grains of crystalline ice results in the exposure of the water monolayer just above the substrate to the vacuum during the crystallization process on both substrates.  相似文献   

15.
The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.  相似文献   

16.
A simple efficient strategy for the simultaneous synthesis and anchoring of liquid crystal (LC)-stabilised gold nanoparticles (NPs) on indium tin oxide (ITO) substrate is described. A monolayer of 3-mercaptopropyltrimethoxy silane (MPS) compound was formed on ITO and quality of the monolayer was assessed using electrochemical techniques namely cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Gold NP preparation was carried out on this monolayer-modified substrate (and on bare ITO), in a single-step reaction, simply by drop-casting a solution containing an appropriate amount of chloroauric acid and a LC compound possessing a terminal amino group, on the MPS monolayer-modified substrate and heating (70degree) for 2-3 min.. The LC compound served as a reducing agent as well as a capping ligand. LC-capped NPs were chemically anchored onto the ITO substrate through bonding to thiol moiety of the MPS. The CV and EIS analysis of the MPS monolayer showed a complete blocking behaviour for the electron transfer across the electrode/electrolyte interface confirming the formation of a high-quality dense compact monolayer. On the other hand, upon immobilisation of LC-gold NP composite on self-assembled monolayer-modified ITO substrates, both CV and impedance studies showed a small current indicating the gold NP-mediated electron transfer, thus confirming the successful immobilisation of NPs.  相似文献   

17.
We show that two dips of an oxidized silicon substrate through a prepolymerized n-octadecylsiloxane monolayer at an air-water interface in a rapid succession produces periodic, linear striped patterns in film morphology extending over macroscopic area of the substrate surface. Langmuir monolayers of n-octadecyltrimethoxysilane were prepared at the surface of an acidic subphase (pH 2) maintained at room temperature (22 +/- 2 degrees C) under relative humidities of 50-70%. The substrate was first withdrawn at a high dipping rate from the quiescent aqueous subphase (upstroke) maintained at several surface pressures corresponding to a condensed monolayer state and lowered soon after at the same rate into the monolayer covered subphase (downstroke). The film structure and morphology were characterized using a combination of optical microscopy, imaging ellipsometry, and Fourier transform infrared spectroscopy. An extended striped pattern, perpendicular to the pushing direction of the second stroke, resulted for all surface pressures when the dipping rate exceeded a threshold value of 40 mm min(-1). Below this threshold value, uniform deposition characterizing formation of a bimolecular film was obtained. Under conditions that favored striped deposition during the downstroke through the monolayer-covered interface, we observed a periodic auto-oscillatory behavior of the meniscus. The stripes appear to be formed by a highly correlated reorganization and/or exchange of the first monolayer, mediated by the Langmuir monolayer at the air-water interface. This mechanism appears distinctly different from nanometer scale stripes observed recently in single transfers of phospholipid monolayers maintained near a phase boundary. The stripes further exhibit wettability patterns useful for spatially selective functionalization, as demonstrated by directed adsorptions of an organic dye (fluorescein) and an oil (hexadecane).  相似文献   

18.
Langmuir-Blodgett transfer of a dipalmitoylphosphatidylcholine monolayer onto macroscopically curved mica surfaces results in microscopic patterns of the transferred monolayer that differ from those of films transferred onto a flat mica substrate. On curved surfaces a modulated horizontal striped pattern evolves that has a zigzag boundary at the liquid condensed front of the stripe and a continuous straight boundary at the liquid condensed rear. We propose that the sensitivity of the pattern to the macroscopic curvature of the sample is due to a flow-controlled hydrodynamic instability caused by the subphase flow close to the three-phase contact line.  相似文献   

19.
Viscoelastic braking theories developed by Shanahan and de Gennes and by others predict deformation of a solid surface at the solid-liquid-air contact line. This phenomenon has only been observed for soft smooth surfaces and results in a protrusion of the solid surface at the three-phase contact line, in agreement with the theoretical predictions. Despite the large (enough to break chemical bonds) forces associated with it, this deformation was not confirmed experimentally for hard surfaces, especially for hydrophobic ones. In this study we use superhydrophobic surfaces composed of an array of silicon nanostructures whose Young modulus is 4 orders of magnitude higher than that of surfaces in earlier recorded viscoelastic braking experiments. We distinguish between two cases: when a water drop forms an adhesive contact, albeit small, with the apparent contact angle θ < 180° and when the drop-surface adhesion is such that the conditions for placing a resting drop on the surface cannot be reached (i.e., θ = 180°). In the first case we show that there is a surface deformation at the three-phase contact line which is associated with a reduction in the hydrophobicity of the surface. For the second case, however, there cannot be a three-phase contact line associated with a drop in contact with the surface, and indeed, if we force-place a drop on the surface by holding it with a needle, no deformation is detected, nor is there a reduction in the hydrophobic properties of the surface. Yet, if we create a long horizontal three-phase contact line by partially immersing the superhydrophobic substrate in a water bath, we see a localized reduction in the hydrophobic properties of the surface in the region where the three-phase contact line used to be. The SEM scan of that region shows a narrow horizontal stripe where the nanorods are no longer there, and instead there is only a shallow structure that is lower than the nanorods height and resembles fused or removed nanorods. Away from that region, either on the part of the surface which was exposed to bulk water or the part which was exposed to air, no change in the hydrophobic properties of the surface is observed, and the SEM scan confirms that the nanorods seem intact in both regions.  相似文献   

20.
The coexistence of phases in multiple-chain phospholipid monolayers is revealed after both horizontal (‘scooping up’ or Langmuir–Schaefer–Kato technique) and vertical (Langmuir–Blodgett technique (LB)) transfer onto mica substrates by means of scanning force microscopy (SFM) in tapping and contact mode experiments. Both methods show similar surface topography features. Brewster angle microscopy (BAM) experiments display the formation of round-shaped and dendritic domains in the coexistence region between liquid-condensed (LC) and liquid-expanded (LE) phases in monolayers at the air/water-interface. Higher resolution SFM on samples transferred from this region indicate the presence of defects inside the larger domains and the formation of smaller aggregates and stripes in the surrounding background. The measurements produce direct proof of a substrate-mediated condensation during/after the transfer. The main difference between the two dipping modes used is the elongation of the small aggregates in the case of vertical transfer. Horizontal deposition appears to better preserve shape and size of the domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号