首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
We studied the frontal curing of trimethylolpropane triglycidyl ether (TMPTGE) using two BF3‐amine initiators and two fillers, kaolin and fumed silica. In the case of kaolin, the range of concentrations allowing for frontal polymerization to propagate was dependent on its heat absorption effect whereas in the case of silica it was a consequence of the rheological features of this additive. However, for both systems the velocity and front temperature show the same trends; in all cases front velocities were on the order of 1 cm/min with front temperatures about 200 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2000–2005, 2010  相似文献   

2.
Aminophenoxycyclotriphosphazenes have been used as curing agents for epoxy resins. The thermal curing was performed in stages at 120–125 and 175–180°C followed by postcuring at 225°C to give tough brown polymers. The thermal curing reaction was monitored using FTIR and differential scanning calorimetry. Thermogravimetric analysis of the cured resins has shown thermal stability up to 350–340°C. The char yield obtained in nitrogen at 800°C was about 55–42% and in air at 700°C was about 40–32%. Graphite cloth laminates were prepared. The mechanical properties evaluated were found superior to those of commonly used epoxy resin systems. These resins are useful for making fire- and heat-resistant composites, laminates, molded parts, and adhesives.  相似文献   

3.
Base epoxy oligomers of Bisphenol A type were cured by aliphatic and aromatic amines, as well as by anhydride and isocyanate hardeners. The glassy networks obtained were characterized by scanning calorimetry, linear dilatometry, IR spectroscopy and electron microscopy.  相似文献   

4.
5.
《先进技术聚合物》2018,29(1):329-336
Two similar macrocycles protoporphyrin IX and zinc protoporphyrin IX (ZPP) have been used as cross‐linking agents for curing the epoxy resin of bisphenol A diglycidyl ether (BADGE, n = 0). The enthalpies and the activation energies of the esterification reaction of the 2 systems are very close to each other. However, the temperature of the minimum in the differential scanning calorimetry thermogram is 38°C lower for BADGE (n = 0)/ZPP, thus requiring a less energy expenditure for curing the system. By the contrary, the enthalpy and activation energies for the etherification reaction are lower and higher, respectively, for BADGE (n = 0)/ZPP suggesting that the zinc ion affects it, although the involved mechanism is unknown.  相似文献   

6.
The available branching theories and their application to curing of epoxy resins are reviewed. Special attention is paid to theoretical treatment and experimental results of curing with polyamines, polyetherification, and to curing with poly(carboxylic acid)s and cyclic anhydrides.  相似文献   

7.
Epoxy resin adhesives are widely used because of their strength, versatility, and ability to bond a variety of substrates. Furfurylamines represent a potential, new class of epoxy curing agents. Furfuryl amine (FA), tetrahydrofurfuryl amine (THFA), and 5,5′-methylenebis-2-furanmethanamine (DFA) were studied as possible epoxy curing agents. The utility of FA and THFA are limited by their volatility at the temperatures needed to effect cure of diglycidyl-ether of bisphenol A (DGEBA) based epoxy resins. DFA is a very effective epoxy curing agent with the ability to cure DGEBA at rates similar to that of standard epoxy curing agents such as liethylenetriamine.  相似文献   

8.
Radiofrequency (27.12 MHz) heating is used for the activation of the curing reaction of an epoxy resin of DGEBAa) type in presence of diaminodiphenylmethane as crosslinking agent. The principle of the activation process is based on the partial conversion as heat of the dielectric loss in the organic medium due to the forced dipolar relaxation at 27.12 MHz. The samples of thermosetting matter are positioned between two parallel steel plates or electrodes, and an electrical voltage is applied. When the temperature is sufficiently high, the step-growth reactions starts working.  相似文献   

9.
The mechanism of imidazole catalysis in the curing of epoxy resins was studied using the PGE/1-methylimidazole, 2-methylimidazole, and 1,2-dimethylimidazole model systems and another model system based on trichloromethylethylene oxide. It was demonstrated that imidazolium systems, generated in the curing reaction, show an inherent instability leading to cleavage of an N? C bond or the 2-C? H bond (2-unsubstituted imidazoles). Fourier-transform infrared spectroscopy was used to follow specific changes in the IR spectrum of the curing mixture during polymerization. The identification of carbonyl absorptions occurring during the polymerization led to the conclusion that ketone formation is a general occurrence in the cure of epoxides with nitrogen compounds. We have also shown that imidazoles are regenerated during the curing process by at least two routes. One pathway for the regeneration of the catalyst involves N-dealkylation of the imidazole via a substitution process. Another route, β-elimination, afforded carbonyl compounds, which account for the previously unexplained appearence of infrared bands in the 1650–1770 cm?1 region during the curing process. These investigations demonstrated the true catalytic function of the imidazole. Possible mechanisms for the regeneration of the catalyst are also suggested.  相似文献   

10.
《中国化学快报》2022,33(8):4026-4032
To obtain high-efficiency flame retardancy of epoxy resins, a cyclophosphazene derivative tri-(o-henylenediamino)cyclotriphosphazene (3ACP) was successfully synthesized and used as a curing agent for the thermosetting of an epoxy resin system. The flame retardant properties, thermal stability, and pyrolysis mechanism of the resultant thermosets were investigated in detail. The experiments indicated that the synthesized thermoset achieved a UL-94 V-0 rate under a vertical burning test as well as a limiting oxygen index (LOI) of 29.2%, which was able to reach V-0 even when a small amount of 3ACP was incorporated. Scanning electronic microscopic observation demonstrated that the char residue of the thermosets was extremely expanded after the vertical flame test. Thermal analysis showed that the samples had a lower initial decomposition temperature when 3ACP was introduced into the epoxy resin systems. This indicates that the carbonization ability of the thermosets was significantly improved at elevated temperatures. In addition, the incorporation of 3ACP can effectively suppress the release of combustible gases during the pyrolysis process, and the decomposition of E-44/DDS-3ACP curing systems also promotes the formation of polyphosphoramides charred layer in the condensed phase. The investigation on the chemical structures of both the gaseous and condensed phase pyrolysis process confirmed the flame-retardant mechanism of the 3ACP-cured epoxy resins. Therefore, the nonflammable halogen-free epoxy resin developed in this study has potential applications in electric and electronic fields for environment protection and human health.  相似文献   

11.
The heat of reaction and kinetics of curing of diglycidyl ether of bisphenol-A (DGEBA) type of epoxy resin with catalytic amounts of ethylmethylimidazole (EMI) have been studied by differential power-compensated calorimetry as a part of the program for the study of process monitoring for composite materials. The results were compared with those from 1∶1 and 1∶2 molar mixtures of DGEBA and EMI. A method of determination of heat of reaction from dynamic thermoanalytical instruments was given according to basic thermodynamic principles. The complicated mechanism, possibly involving initial ionic formation, has also been observed in other measurements, such as by time-domain dielectric spectroscopy. The behavior of commercially available DGEBA resin versus purified monomeric DGEBA were compared. The melting point of purified monomeric DGEBA crystals is 41.4 °C with a heat of fusion of 81 J/g. The melt of DGEBA is difficult to crystallize upon cooling. The glass transition of purified DGEBA monomer occurs around ?22 °C with aΔC p of 0.60 J/K/g.  相似文献   

12.
《European Polymer Journal》1987,23(5):377-382
The isothermal course of the reaction of phenylglycidyl ether and N,N-methylglycidylaniline with dibutyl amine at various temperatures was investigated DSC. The data were treated on the basis of a reaction scheme with two processes in parallel, one of them auto-catalyzed. A good fit with the experiment was reached only when the order of both processes with respect to amine had been reduced to half its original value. An assumption that the kinetics of the amine-epoxy resin rection are considerably affected by the formation of various complexes through hydrogen bonds may be an explanation. A simple mathematical model has been suggested to estimate this influence. Because of the relatively high heats of interaction for the formation of complexes, the dependence of the measured heat on the degree of conversion is not linear. The magnitude of the error caused by neglecting this fact in investigation of the kinetics by DSC has been estimated.  相似文献   

13.
Polymerization reactions are based on complex processes that are somewhat difficult to predict via mathematical models, especially without experimental data. A method to investigate the cure of epoxies via in-situ Raman spectroscopy has been developed.Differential Scanning Calorimetry (DSC) is the industry-standard method for determining the cure of a polymer, but it is a labor-intensive method that is also fairly slow. Raman spectroscopy was used to monitor the cure chemistry of DGEBA (Diglycidyl Ether of Bisphenol A) and to observe in-situ the evolution of the reticulation.  相似文献   

14.
A series of epoxy resins derived from diglycidyl ethers of bisphenol A with differing initial linear molecular chain lengths have been studied during and after curing with the diamines MDA (4,4′-methylene dianiline) and DDS (4,4′-diamino diphenyl sulfone). The properties that were measured during curing were the volume, the fictive temperature Tf, the gel fraction, the viscosity, and the equilibrium compliance. Graphs of Tf as a function the time of curing tc obtained at four curing temperatures between 40 and 100°C have been reduced to a common curve. After curing, creep compliance curves J(t) were determined which characterize the viscoelastic response from the glassy compliance level to a rubbery equilibrium compliance level. The change in properties that occurs during the time-dependent spontaneous densification below the glass temperature Tg was monitored with repeated measurements of J(t). Time-scale shift factors as a function of volume contraction obtained during this physical aging below Tg were reduced to a common curve.  相似文献   

15.
A four-directional benzene-centered aliphatic polyamine, MXBDP, with high functionality and low volatility, is used to cure epoxy resin (DGEBA). Herein we originally report the isothermal cure kinetics and dynamic mechanical properties of DGEBA/MXBDP. Differential scanning calorimetry confirms that MXDBP is more reactive than commercial linear metaxylenediamine and branched Jeffamine T-403 and the isothermal curing reaction is autocatalytic. The Kamal model is found to be able to well describe the curing rate up to the onset of diffusion control, and the excellent match over the whole conversion range is achieved using the extended Kamal model. Interestingly, the isoconversional kinetic analysis indicates that the effective reaction activation energy (E α ) changes substantially with conversion, and ultimately decreases to a very small value (<10 kJ mol?1) because of the diffusion-controlled reaction kinetics. Then, dynamic mechanical analysis reveals that DGEBA/MXBDP exhibits the higher α- and β-relaxation temperatures and the much higher crosslink density than DGEBA/metaxylenediamine. Our experiment results support that MXBDP has the high reactivity and improved thermal resistance in combination with the advantages of the high functionality, low volatility and decreased CO2 absorption. Therefore, MXBDP may be especially suitable for room temperature-cure epoxy coatings and adhesives.  相似文献   

16.
17.
High curing temperature has been restricting the application and development of phthalonitrile resin. A complex curing agent containing melamine (ME) and ZnCl2 was developed to promote the curing reaction of resorcinol‐based phthalonitrile resin (DPPH). The thermal stability of ME can be significantly enhanced via adding ZnCl2, which was due to the interaction between ZnCl2 and amino group in ME. Moreover, the activities of pristine ZnCl2 and ME were improved via mixing, especially, the curing temperature for DPPH can be effectively reduced. Even at a curing temperature of 300°C, the 5% weight loss temperature of the resulting resin cured with complex curing agent still exceeded 500°C, which was much higher than those with pristine curing agents. In addition, the good long‐term oxidation stability and relatively low water absorption can also be obtained in the resins cured with novel curing agent. This work affords a facile route for designing high‐performance curing agent to improve the curing process of phthalonitrile resin.  相似文献   

18.
A review of the most commonly used amine curing agents of epoxy diane resins is presented. A method for radically improving the processing and performance properties of materials based on cured epoxy diane resins using the proposed technique for modifying curing agents is described. Examples of using formulated epoxy compositions in the building and cable-making industries are given.  相似文献   

19.
Curing kinetics of diglycidyl ether of bisphenol-A (DGEBA) in the presence of novel silicon containing amide-amines were investigated by the dynamic differential scanning calorimetry. Silicon containing amide-amines were prepared by reacting 2.5 moles of 4,4'-diaminodiphenyl ether (E)/4,4'-diaminodiphenyl methane (M)/3,3'-diaminodiphenyl sulfone (mS)/bis(m-aminophenyl) methyl phosphine oxide (B) with one mole of bis(4-chlorobenzoyl) dimethyl silane. The multiple heating rate method (5, 10, 15 and 20°C min-1) was used to study the curing kinetics of epoxy resins in the presence of stoichiometric amounts of amide-amines having molecular masses in the range of 660 to 760 g mol-1. The peak exotherm temperature depends on the heating rate as well as on the structure of amide-amines. Activation energy of curing reaction as determined in accordance to the Ozawa's method was found to be dependent on the structure of amine. The thermal stability of the isothermally cured resins was also evaluated using dynamic thermogravimetry in a nitrogen atmosphere. The char yield was the highest in case of resins cured with amide-amines having both phosphorus and silicon atoms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Imidazoles have for some time been recognized as curing agents for epoxy resins. Once the resin and the imidazole compound are mixed there is a relatively short time in which the mixture can be used, since the polymerization (curing) reaction occurs to some extent even at room temperature causing the reaction mixture to thicken. In order to circumvent this problem we have found that imidazoles can be complexed with organo-lanthanide compounds thereby tying up the imidazole and retarding its rate of reaction in the cure of epoxy materials at ambient temperatures. When it is desired to enhance the rate of cure the temperature of the mixture is simply raised. This paper concerns studies of the epoxy cure reaction with the M(THD)3–IM series. M represents the lanthanide metals Eu, Ho, Pr, Dy, Yb, and Gd, and THD is 2,2,6,6-tetramethyl-3,5-heptanedione. Cure reactions were followed by differential scanning calorimetry and in some cases by infrared spectroscopy. We have demonstrated that these organo-lanthanide–imidazole complexes are effective thermally latent curing agents for epoxy resins. At a temperature of 150°C cure is quite rapid. In the course of these studies it has also been determined that there is an inverse correlation between the lanthanide ionic radius in the complex and the temperature at which the cure reaction occurs. Thus the Yb compound, where the imidazole is most strongly bound, cures at the highest temperature and Pr, where imidazole is bound most weakly, at the lowest. Consistent with these facts is the observation that the Yb compound also gives the longest latency period when mixed with epoxy resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号