首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The i.r. (4000-30 cm−1) and Raman (4000-O cm−1) spectra of dimethyltelluride, dimethyltellurium difluoride and their deuterated analogs have been obtained. All the active fundamentals of these compounds except methyl torsions were assigned, assuming a C molecular symmetry for both the tellurides. Normal coordinate calculations have been made in order to confirm the proposed assignments. The skeletal bond strength of the tellurides together with that of TeF4 are discussed, using the valence stretching force constants.  相似文献   

2.
Full infrared and Raman vibrational assignments (4000-50 cm−1) of 1,10-phenanthroline are presented and full infrared assignments (4000-50 cm−1) of 1,10-phenanthroline-d8 are given. Four fundamentals are newly reported for 1,10-phenanthroline and several changes are recommended to earlier assignments for this compound. The assignments of the fully deuterated analogue are newly reported.  相似文献   

3.
Polarized Raman spectra of 2,3-dimethoxy toluene have been recorded in the region 50–4000 cm−1 and IR spectra in the region 200–4000 cm−1. All the 63 (40a′ + 23a″) normal modes of vibration have been assigned assuming a Cs point group. Consistent assignments for the internal modes of vibration of methyl (CH3) and methoxy (OCH3) groups have been proposed. In addition thermodynamic functions have been computed over the temperature range 100–1500 K on a MIGHTY II computer and barriers to internal rotations for the three methyl (CH3) tops and the two methoxy (OCH3) tops about their respective axes have been determined, using the assigned torsional frequencies and assumed structural parameter for the 2,3-dimethoxy toluene. The barrier heights have been found to be greater than 2.5 kcal mol−1 for all five tops.  相似文献   

4.
5.
The new complexes mer-Cr(py)3(N3)3, NaCr(py)4(N3)4, KCr(py)4(N3)4, and RbCr(py)3(N3)4 (py = pyridine) have been prepared. Infrared (4000-50 cm−1) and diffuse reflectance spectra (region 300-77 K) of powdered samples have been measured and discussed on bases of the known structures of these complexes. Single crystal absorption spectra for the mer-complex were obtained in the temperature range from 300 to 10 K revealing extensive vibronic structure associated with the 2Eg(Oh) and 2T1g(Oh) electronic origins. Crystal field calculations were used to assign the bands in the vibronic region and to obtain estimates for the crystal field and Racah parameters for this class of substances. The parameters found for the mer-complex at 10 K are 10 Dq = 17906 cm−1, B = 387 cm−1 and C = 3381 cm−1.  相似文献   

6.
7.
Laser Raman (50–4000 cm−1) and IR (200–4000 cm−1) spectra of 5-trifluoromethyl uracil have been recorded and analysed. It has been possible to assign all the 39 (26a′+13a″) normal modes of vibration. Consistent assignments have been made for the internal modes of the CF3 group, especially for the antisymmetric CF3 stretching and bending modes. Using thus assigned vibrational frequencies and assumed structural parameters, thermodynamic functions, in the temperature range 100–1000 K, have been computed and the barrier to the internal rotation for the CF3 top has been determined.  相似文献   

8.
The i.r. (4000-40 cm−1) and Raman (4000-10 cm−1) spectra of gaseous, liquid and solid methoxy difluorophosphinoxide, CH3OP(O)F2, and the deuterated analog have been recorded. Results obtained from variable solvent and matrix isolation studies are consistent with the existence of both trans (CO bond trans to the PO bond) and gauche (dihedral angle approximately 120° from the trans form) conformers in the fluid phases. From simulations of observed gas phase i.r. band profiles, it was possible for assignments to be made to the individual conformers for a number of the fundamentals. Variable temperature studies carried out for the gaseous and liquid phases give energy differences between the gauche and trans conformers of 451 ± 100 cm−1 (1.29 ± 0.3 kcal/mol) and 69 ± 20 cm−1 (197 ± 57 cal/mol), respectively. Furthermore, these data are consistent with the gauche form being the thermodynamically preferred conformer for the gas phase whereas the trans conformer is preferred in the liquid phase and the only conformer present in the annealed solid. The methoxy torsional mode of the gauche conformer has been assigned to a very strong band observed in the far i.r. spectrum of the gas phase at 42 cm−1. The matrix isolation spectra of the normal compound in Ar, CO and N2 matrices indicated no changes in the conformational equilibrium among these different matrices and this equilibrium remains unchanged upon annealing the matrices.  相似文献   

9.
Raman spectra (4000-150 cm?1) of a single crystal of NaGa(NH2)4 and infrared spectra (4000-200 cm?1 ) of a polycrystalline sample have been studied at different temperatures. An assignment of the bands is given. The spectra are discussed assuming S4 and Td point group symmetry of the Ga(NH2)?4 ion at low temperature and at room temperature respectively. Metal-ligand and N-H stretching frequencies are compared to those of some other amido metalates.  相似文献   

10.
The FT-Raman spectra (2000-30 cm−1) of liquid and solid nitryl chloride, ClNO2, along with the infrared spectra (2000-80 cm−1) of the gas and solid have been recorded. All six fundamentals are confidently identified and the potential energy distributions determined from the force fields obtained from ab initio calculations. Several different basis sets have been utilized to determine the harmonic frequencies and force constants which are compared to the previously reported valence force constants. Structural parameters have been calculated with these basis sets including electron correlation with MP2, MP3 and MP4 perturbation. The calculated equilibrium structural parameters are compared to the experimental r0 structural parameters. The spectra of the solid indicate that there are at least two molecules per primitive cell. All of these results are compared to the corresponding quantities for some similar molecules.  相似文献   

11.
The i.r. and Raman spectra (30–4000 cm−1) of 1-formyl-3-thiosemicarbazide (FTSC) and deuterated ftsc-d4, have been studied. Most of the vibration modes reveal pairs of bands and show strong temperature dependence. A band group {ν(NNH2)} at ∼ 1100 cm−1 exhibits well resolved doublet (1095 and 1112 cm−1) structure below 100 k. The intensity in the 11 12 cm−1 band decreases regularly (band disappears at 150 K) with the rise in temperature. Two new bands at 955 and 1070 cm−1 appear while measured above 400 K. The system eventually exists in several conformers in simultaneous equilibria. Moreover, a few bands {e.g. ν(CO), ν(CS) and ν(CH)} that show strong intensifies in i.r. exhibit weak (or zero) intensifies in the Raman and vice-versa. The features (characteristic of u and g vibration species) could be explained by a C2h pseudo symmetry space group proposed for the system. Both the FTSC and FTSC-d4 represent strong molecular associations. This favours the maximum abundance in the dimer stabilized conformers.  相似文献   

12.
The far-infrared spectra of gaseous and solid ethyl nitrate, CH3CH2ONO2, have been recorded from 500 to 50 cm−1. The fundamental asymmetric torsion of the trans conformer which has a heavy atom plane has been observed at 112.50 cm−1 with two excited states failing to lower frequencies, and the corresponding fundamental torsion of the gauche conformer was observed at 109.62 cm−1 with two excited states also falling to lower frequencies. The results of a variable temperature Raman study indicate that the trans conformer is more stable than the gauche conformer by 328 ± 96 cm−1 (938 ± 275 cal mol−1). An asymmetric potential function governing the internal rotation about the CH2O bond is reported which gives a trans to gauche barrier of 894 ± 15 cm−1 (2.56 ± 0.04 kcal mol−1) and a gauche to gauche barrier of 3063 ± 68 cm−1 (8.76 ± 0.20 kcal mol−1) with the trans conformer more stable by 220 ± 148 cm−1 (0.63 ± 0.42 kcal mol−1). Transitions arising from the symmetric CH3 and NO2 torsions are observed for both conformers, from which the threefold and twofold periodic barriers to internal rotation have been calculated. For the trans conformer the values are 1002 cm−1 (2.87 kcal mol−1) and 2355 ± 145 cm−1 (6.73 ± 0.42 kcal mol−1) and for the gauche conformer they are 981 cm−1 (2.81 kcal mol−1) and 2736 ± 632 cm−1 (7.82 ± 1.81 kcal mol−1) for the CH3 and NO2 rotors, respectively. These results are compared to the corresponding quantities for some similar molecules.  相似文献   

13.
Infrared spectra of liquid samples of crotonyl chloride and dimethyl acryl chloride in the region 4000-600 cm−1 have been recorded along with the Raman spectra in the region 4000-100 cm−1. From CNDO/2 results and some band splitting, existence of conformers are inferred. A complete assignment of the spectra is made on the basis of reported spectral studies on related compounds and the relative variation of i.r. peak intensity with solvent polarity. Normal coordinate analysis of crotonyl chloride has been carried out for the first time.  相似文献   

14.
The Raman spectra (3200–10 cm−1) of ethyl methyl selenide in the gas, liquid and solid phases and the infrared spectra (3200–30 cm−1) of the gas and solid have been recorded. Qualitative depolarization ratios have been obtained for the lines in the Raman spectrum of the liquid. By a variable temperature Raman study of the liquid, it has been determined that the gauche conformer is more stable than the trans rotamer by 158±16 cm−1 (452±46 cal mol−1), and the gauche conformer is the rotamer present in the solid. A complete vibrational assignment for the gauche conformer is presented. All of these data are compared to the corresponding quantities obtained from ab initio Hartree—Fock gradient calculations employing the STO-3G* and 4–31G*/MIDI-4* basis sets. Complete equilibrium geometries have been calculated for both rotamers and the results are discussed and compared with the corresponding quantities for some similar molecules.  相似文献   

15.
The i.r. spectra (4000-200 cm−1) of N-alkyltetrazoles and their complexes with copper(II) salts CuCl2 and Cu(NCS)2 have been measured. Spectral criteria in the middle and far regions for the identification of tetrazole isomers and their complexes are proposed. The site of the coordination in a tetrazole molecule and supposed structure of complexes are being discussed.  相似文献   

16.
The infrared (3500-20 cm−1) and Raman (3200-10 cm−1) spectra have been recorded for gaseous and solid fluoroacetone (1-fluoro-2-propanone), CH2FC(O)CH3. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. These data have been interpreted on the basis that the molecule exists predominantly in the cis (fluorine atom oriented cis to the methyl group) conformation in the vapor but for the liquid a second conformer having a trans orientation (fluorine atom oriented trans to the methyl group) is present. From a study of the Raman spectrum of the liquid at variable temperatures the trans conformation has been determined to be more stable than the cis form by 416 ± 54 cm−1 (1.19 ± 0.15 kcal mol−1) and is the only conformation present in the spectrum of the annealed solid. The asymmetric torsional fundamental for the more stable cis conformer has been observed in the far infrared spectrum of the gas at 69.6 cm−1 with six accompanying hot band transitions proceeding to lower frequency. The corresponding mode for the high energy trans conformer is extensively overlapped but is distinguishable at ∼65 cm−1. From these data the asymmetric torsional potential function governing internal rotation about the CC bond has been determined and the potential coefficients are: V1 = 675 ± 2, V2 = 991 ± 5, V3 = 74 ± 1 and V4 = 54 ± 2 cm−1. The cis to trans and trans to cis barriers are 1332 ± 5 and 731 ± 5 cm−1, respectively, with an enthalpy difference of 601 ± 8 cm−1 (1.72 ± 0.02 kcal mol−1). From ab initio calculations at the 3-21G and 6-31G* basis set levels optimized geometries for both the cis and trans conformers have been obtained and the potential surface governing internal rotation of the asymmetric top determined. The observed vibrational frequencies with their assignments for both the cis and trans conformers are compared to those from the ab initio calculations. All of these results are compared to the corresponding quantities for some similar molecules.  相似文献   

17.
The Raman (3200—10cm−1) and infrared (3200—50 cm−1) spectra of gaseous and solid 1-chloro-2-methylpropane and 1-bromo-methylpropane, as well as the Raman spectra of the liquids, have been recorded and assigned. The gauche asymmetric torsion of the 1-chloro-2-methylpropane molecules has been observed at 110 cm−1 in the Raman spectrum of the gas. For the 1-bromo-2-methylpropane molecule, both the trans and gauche asymmetric torsions have been observed at 106.70 and 103.94 cm−1, respectively, along with three additional transitions for the gauche conformer. From these data, the asymmetric potential function for the bromide molecules to V1 = —493 ±16, V2 = 595 ± 18, and V3 = 2006 ± 6 cm−1 with the trans conformer being more stable than the gauche conformer by 44 ± 20 cm−1. The trans form is found experimentally to be more stable in the liquid phase by 30 ± 14 cm−1 (83 ± 40 cal mol−1). From the relative intensities, in the Raman spectra, of the CCl stretches measured as a function of temperature, the gauche conformer of the chloride molecules to be 167 ± 71 cm−1 (479 ± 203 cal mol−1) more stable than the trans conformer in the gas phase, and 73 ± 10 cm−1 (208 ± 29 cal mol−1) more stable in the liquid phase. The methyl torsions for the gauche and trans conformers of both molecules are tentatively assigned in the gas phase and the barriers have been calculated. The results of this study are compared with previous studies on these molecules.  相似文献   

18.
The IR spectra of gaseous and solid hexamethyldisilane between 4000 and 25 cm−1 and the far-IR spectrum of the liquids from 450 to 25 cm−1 have been recorded. The Raman spectra have been recorded from 3500 to 10 cm−1 for all three physical phases. Assisted by ab initio calculations, the vibrational spectrum of hexamethyldisilane has been assigned under D3d symmetry and the results of a normal coordinate analysis are discussed. No spectral features indicative of free internal rotation have been observed. Gradient ab initio calculations have been carried out for the disilane and hexamethyldisilane molecules using different types of basis sets. The structural parameters, rotational constants, unscaled and scaled frequencies and harmonic force constants have been reported for both disilane and hexamethyldisilane.  相似文献   

19.
The infrared absorption intensities of the chlorofluorocarbons C2ClxFy, (x + y = 6); the hydrofluorocarbons C2HxFyH (x + y = 6); and a number of hydrochlorofluorocarbons, including some members of the propane series, have been measured. Absorption intensities have been obtained by integration over specified ranges of frequencies. The ranges used include the atmospheric window (1250t-833 cm−1), 3500-450 cm−1, 1300-700 cm−1, and those for selected individual absorption bands. Comparisons of the results have been made with published work where available, and attention is drawn to possible sources of error in the measurement of band areas. The spectra of the halopropanes have been included for the range 3500-150 cm−1. A preliminary study has been made of the relation between the number of fluorine atoms in the molecule and the intensity of absorption of the CF stretching vibrations.  相似文献   

20.
The infrared (3500-20 cm−1) and Raman (3200-10 cm−1) spectra have been recorded for gaseous and solid chloroacetone (1-chloro-2-propanone), CH2ClC(O)CH3. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. These data have been interpreted on the basis that the molecule exists predominantly in a gauche conformation having a “near cis” structure of C1 symmetry (dih ClCCO=142°C) in the vapor but for the liquid a second conformer having a trans structure (chlorine atom oriented trans to the methyl group) with Cs point group symmetry is present. From a study of the Raman spectrum of the liquid at variable temperatures, the trans conformation has been determined to be more stable than the gauche form by 1042±203 cm−1 (2.98±0.6 kcal mol−1 and is the only conformer present in the spectrum of the annealed solid. From ab initio calculations at the 3-21G* and 6-31G* basis set levels optimized geometries for both the gauche and trans conformers have been obtained and the potential surfaces governing internal rotation of the symmetric and asymmetric rotors have been obtained. The observed vibrational frequencies and assignments to the fundamental vibrations for both the gauche and trans conformers are compared to those calculated with the 3-21G* basis set. The results are discussed and compared with the corresponding quantities obtained for some similar molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号