首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effective potentials of 10-D supergravity model with one-loop Casimir corrections are derived in this paper.We show that compactification are unstable for Kalb-Ramond model,but in the case of ten-dimensional supergravity model it is possible to achieve a stable compactification by including the contribution of fermionic condensation.The relation of this kind of model with inflation cosmology is discussed.  相似文献   

2.
The Casimir effect is highly dependent on the shape and structure of space boundaries. This dependence is encoded in the variation of vacuum energy with the different types of boundary conditions. We analyze from a global perspective the properties of the Casimir energy as a function on the largest space of the consistent boundary conditions MF\mathcal{M}_{F} for a massless scalar field confined between to homogeneous parallel plates. In particular, we analyze the analytic properties of this function and point out the existence of a third order phase transition at periodic boundary conditions. We also characterize the boundary conditions which give rise to attractive or repulsive Casimir forces. In the interface between both regimes we find a very interesting family of boundary conditions without Casimir effect, and fully characterize the boundary conditions which do not induce any type of Casimir force.  相似文献   

3.
We discuss the Casimir effect for massless scalar fields subject to the Dirichlet boundary conditions on the parallel plates at finite temperature in the presence of one fractal extra compactified dimension. We obtain the Casimir energy density with the help of the regularization of multiple zeta function with one arbitrary exponent and further the renormalized Casimir energy density involving the thermal corrections. It is found that when the temperature is sufficiently high, the sign of the Casimir energy remains negative no matter how great the scale dimension δ is within its allowed region. We derive and calculate the Casimir force between the parallel plates affected by the fractal additional compactified dimension and surrounding temperature. The stronger thermal influence leads the force to be stronger. The nature of the Casimir force keeps attractive.  相似文献   

4.
We analyze the Fubini-Furlan-Rosetti sum rule in the framework of covariant baryon chiral perturbation theory to leading one-loop accuracy and including next-to-leading-order polynomial contributions. We discuss the relation between the subtraction constants in the invariant amplitudes and certain low-energy constants employed in earlier chiral perturbation theory studies of threshold neutral pion photoproduction off nucleons. In particular, we consider the corrections to the sum rule due to the finite pion mass and show that below the threshold they agree well with determinations based on fixed-t dispersion relations. We also discuss the energy dependence of the electric dipole amplitude E0+.  相似文献   

5.
We investigate the role of Casimir energy as a mechanism for brane stability in five-dimensional models with the fifth dimension compactified on an S1/Z2S1/Z2 orbifold, which includes the Randall–Sundrum two brane model (RS1). We employ a ζζ-function regularization technique utilizing the Schwinger proper time method and the Jacobi theta function identity to calculate the one-loop effective potential. We show that the combination of the Casimir energies of a scalar Higgs field, the three generations of Standard Model fermions and one additional massive non-SM scalar in the bulk produces a non-trivial minimum of the potential. In particular, we consider a scalar field with a coupling in the bulk to a Lorentz violating vector particle localized to the compactified dimension. Such a scalar may provide a natural means of fine tuning needed for stabilization of the brane separation. Finally, we briefly review the possibility that Casimir energy plays a role in generating the currently observed epoch of cosmological inflation by examining a simple five-dimensional anisotropic metric.  相似文献   

6.
Using ensembles of two, three, and four spheres immersed in a fermionic background we evaluate the (integrated) density of states and the Casimir energy. We thus infer that for sufficiently smooth objects, whose various geometric characteristic lengths are larger then the Fermi wave length one can use the simplest semiclassical approximation (the contribution due shortest periodic orbits only) to evaluate the Casimir energy. We also show that the Casimir energy for several objects can be represented fairly accurately as a sum of pairwise Casimir interactions between pairs of objects.  相似文献   

7.
The Casimir effect for massless scalar fields satisfying Dirichlet boundary conditions on the parallel plates in the presence of one fractal extra compactified dimension is analyzed. We obtain the Casimir energy density by means of the regularization of multiple zeta function with one arbitrary exponent. We find a limit on the scale dimension like $\delta>\frac{1}{2}$ to keep the negative sign of the renormalized Casimir energy which is the difference between the regularized energy for two parallel plates and the one with no plates. We derive and calculate the Casimir force relating to the influence from the fractal additional compactified dimension between the parallel plates. The larger scale dimension leads to the greater revision on the original Casimir force. The two kinds of curves of Casimir force in the case of integer-numbered extra compactified dimension or fractal one are not superposition, which means that the Casimir force show whether the dimensionality of additional compactified space is integer or fraction.  相似文献   

8.
The forces on a single Bose–Einstein condensate confined between two parallel plates consist of two components, namely, surface tension force and Casimir force. In canonical ensemble, these forces are quite different from the one in grand canonical ensemble. In small region with distance $$\ell $$ between two parallel plates, using double parabola approximation, we find that surface tension force decreases as $${{\ell }^{{ - 3}}}$$, whereas the Casimir force, in one-loop approximation of the quantum field, is proportional to $${{\ell }^{{ - 13/2}}}$$. The total force is also considered and its veer is found.  相似文献   

9.
We propose a method for the detection of a dynamical Casimir effect. Assuming that the Casimir photons are being generated in an electromagnetic cavity with a vibrating wall (dynamical Casimir effect), we consider electrons passing through the cavity to be interacting with the intracavity field. We show that the dynamical Casimir effect can be observed via the measurement of the change in the average or in the variance of the electron’s kinetic energy. We point out that the enhancement of the effect due to finite temperatures makes it easier to detect the Casimir photons.  相似文献   

10.
The infrared behaviour of quantum field theories confined in bounded domains is strongly dependent on the shape and structure of space boundaries. The most significant physical effect arises in the behaviour of the vacuum energy. The Casimir energy can be attractive or repulsive depending on the nature of the boundary. We calculate the vacuum energy for a massless scalar field confined between two homogeneous parallel plates with the most general type of boundary conditions depending on four parameters. The analysis provides a powerful method to identify which boundary conditions generate attractive or repulsive Casimir forces between the plates. In the interface between both regimes we find a very interesting family of boundary conditions which do not induce any type of Casimir force. We also show that the attractive regime holds far beyond identical boundary conditions for the two plates required by the Kenneth–Klich theorem and that the strongest attractive Casimir force appears for periodic boundary conditions whereas the strongest repulsive Casimir force corresponds to anti-periodic boundary conditions. Most of the analysed boundary conditions are new and some of them can be physically implemented with metamaterials.  相似文献   

11.
We study the Casimir problem for a fermion coupled to a static background field in one space dimension. We examine the relationship between interactions and boundary conditions for the Dirac field. In the limit that the background becomes concentrated at a point (a “Dirac spike”) and couples strongly, it implements a confining boundary condition. We compute the Casimir energy for a masslike background and show that it is finite for a stepwise continuous background field. However the total Casimir energy diverges for the Dirac spike. The divergence cannot be removed by standard renormalization methods. We compute the Casimir energy density of configurations where the background field consists of one or two sharp spikes and show that the energy density is finite except at the spikes. Finally we define and compute an interaction energy density and the force between two Dirac spikes as a function of the strength and separation of the spikes.  相似文献   

12.
We consider a Casimir cavity, one plate of which is a thin superconducting film. We show that when the cavity is cooled below the critical temperature for the onset of superconductivity, the sharp variation (in the far infrared) of the reflection coefficient of the film engenders a variation in the value of the Casimir energy. Even though the relative variation in the Casimir energy is very small, its magnitude can be comparable to the condensation energy of the superconducting film, and this gives rise to a number of testable effects, including a significant increase in the value of the critical magnetic field, required to destroy the superconductivity of the film. The theoretical ground is therefore prepared for the first experiment ever aimed at measuring variations of the Casimir energy itself.  相似文献   

13.
《Nuclear Physics B》2005,726(3):441-463
We consider a five-layer Casimir cavity, including a thin superconducting film. We show that when the cavity is cooled below the critical temperature for the onset of superconductivity, the sharp variation (in the microwave region) of the reflection coefficient of the film produces a variation in the value of the Casimir energy. Even though the relative variation in the Casimir energy is very small, its magnitude can be comparable to the condensation energy of the superconducting film, and thus causes a significant increase in the value of the critical magnetic field, required to destroy the superconductivity of the film. The proposed scheme might also help clarifying the current controversy about the magnitude of the contribution to Casimir free energy from the TE zero mode, as we find that alternative treatments of this mode strongly affect the shift of critical field.  相似文献   

14.
We show the influence of surface plasmons on the Casimir effect between two plane parallel metallic mirrors at arbitrary distances. Using the plasma model to describe the optical response of the metal, we express the Casimir energy as a sum of contributions associated with evanescent surface plasmon modes and propagative cavity modes. In contrast to naive expectations, the plasmonic mode contribution is essential at all distances in order to ensure the correct result for the Casimir energy. One of the two plasmonic modes gives rise to a repulsive contribution, balancing out the attractive contributions from propagating cavity modes, while both contributions taken separately are much larger than the actual value of the Casimir energy. This also suggests possibilities to tailor the sign of the Casimir force via surface plasmons.  相似文献   

15.
This work is aimed at studying the influence of critical Casimir effects on energetic properties of curved defect lines in the frame of 2D Ising model. Two types of defect curves were investigated. We start with a simple task of globule formation from four-defect line. It was proved that an exothermic reaction of collapse occurs and the dependence of energy release on temperature was observed. Critical Casimir energy of extensive line of constant curvature was also examined. It was shown that its critical Casimir energy is proportional to curvature that leads to the tendency to radius decreasing under Casimir forces. The results obtained can be applied to proteins folding problem in polarized liquid.  相似文献   

16.
We theoretically investigate the additional correction to the Casimir effect due to the change of dielectric constant with temperature, which is different from the previous research that have widely taken dielectric constants of materials as a value independent of temperature. It is found that such a correction can go beyond 20% for some cases and it should not be ignored. Due to the prominent correction, it is possible to tune the Casimir force by such an effect.  相似文献   

17.
《Nuclear Physics B》2006,743(3):249-275
We recently proposed a new approach to the Casimir effect based on classical ray optics (the “optical approximation”). In this paper we show how to use it to calculate the local observables of the field theory. In particular, we study the energy–momentum tensor and the Casimir pressure. We work three examples in detail: parallel plates, the Casimir pendulum and a sphere opposite a plate. We also show how to calculate thermal corrections, proving that the high temperature ‘classical limit’ is indeed valid for any smooth geometry.  相似文献   

18.
苗兵 《物理学报》2020,(8):92-98
量子电动力学中的卡西米尔力是真空零点能的体现.广义的卡西米尔力则依赖于涨落介质的类型广泛地出现于物理中,包括量子,临界,戈德斯通模,以及非平衡卡西米尔力.长程关联的涨落介质和约束是产生卡西米尔力的两个条件.本文通过回顾卡西米尔物理的发展,讨论了不同类型的卡西米尔力,几种正规化方法,并对卡西米尔物理的进一步发展做了展望.  相似文献   

19.
程红波 《中国物理快报》2005,22(9):2190-2193
We reexamine the Casimir effect for the rectangular cavity with two or three equal edges in the presence of compactified universal extra dimension. We derive the expressions for the Casimir energy and discuss the nature of Casimir force. We show analytically the extra-dimension corrections to the standard Casimir effect to put forward a new method of exploring the existence of extra dimensions of the Universe.  相似文献   

20.
We propose a procedure for renormalizing the Casimir energy that makes the steps that are used in the standard renormalization procedure, that is, regularization, subtraction, and deregularization, implicit. The proposed procedure is based on the calculation of a set of convergent sums, each of which is related to the initial divergent sum of the non-renormalized Casimir energy. Next, we construct a system of linear equations that relates this set of convergent sums to the renormalized Casimir energy. The unknown renormalized Casimir energy is obtained as a result of solving this system of equations. In this case, both the calculations of the convergent sums and the subsequent solution of the system of linear equations are performed with a certain (generally speaking, arbitrary) ordered accuracy; thus, the result is also approximate. The proposed procedure is, first, more computationally effective than the standard one, and, second, applicable not only to the problems where a transcendental equation for the spectrum can be written, but also to the problems where the spectrum is known only numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号