首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过AB2型聚合单体4-(2-羟基乙氧基)苯甲醛二甲缩醛与B2型核分子苯甲醛二甲缩醛的缩醛转移聚合反应,反应过程中不断排出低沸点的醇,合成了具核、骨架可水解的超支化聚缩醛(HBPAs).实验表明,HBPAs的分子量,多分散性和聚合度随着核比例的改变发生明显的变化.增加核比例,聚合物的分子量,多分散性和聚合度均降低.HBPAs在弱酸性条件下,骨架发生水解,生成4-(2-羟基乙氧基)-苯甲醛.研究发现,核比例对于聚合物降解速率有明显的影响,增加核比例,聚合物的降解速率加快.这表明,通过加入核分子,可以在一定程度上调控超支化聚缩醛的结构与性能.  相似文献   

2.
Living radical polymerizations of diisopropyl fumarate (DiPF) are carried out to synthesize poly(diisopropyl fumarate) (PDiPF) as a rigid poly(substituted methylene) and its block copolymers combined with a flexible polyacrylate segment. Reversible addition‐fragmentation chain transfer (RAFT) polymerization is suitable to obtain a high‐molecular‐weight PDiPF with well‐controlled molecular weight, molecular weight distribution, and chain‐end structures, while organotellurium‐mediated living radical polymerization (TERP) and reversible chain transfer catalyzed polymerization (RTCP) give PDiPF with controlled chain structures under limited polymerization conditions. In contrast, controlled polymerization for the production of high‐molecular‐weight and well‐defined PDiPF is not achieved by atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMP). The block copolymers consisting of rigid poly(substituted methylene) and flexible polyacrylate segments are synthesized by the RAFT polymerization. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2136–2147  相似文献   

3.
The readily available cellulose‐derived bicyclic compound levoglucosenol was polymerized through ring‐opening metathesis polymerization (ROMP) to yield polylevoglucosenol as a novel type of biomass‐derived thermoplastic polyacetal, which, unlike polysaccharides, contains cyclic as well as linear segments in its main chain. High‐molar‐mass polyacetals with apparent weight‐average molar masses of up to 100 kg mol?1 and dispersities of approximately 2 were produced despite the non‐living/controlled character of the polymerization due to irreversible deactivation or termination of the catalyst/active chain ends. The resulting highly functionalized polyacetals are glassy in bulk with a glass transition temperature of around 100 °C. In analogy to polysaccharides, polylevoglucosenol degrades slowly in an acidic environment.  相似文献   

4.
<正> 用烷基锂引发的丁二烯“活性”聚合,通常只能得到分子量分布较窄的聚合物。这类聚合物的门尼粘度较高,不易加工,且易冷流。为了解决这些问题,一般是合成分子量分布较宽且有一定支化的聚合物。但在以往的合成宽分布聚合物的方法中,大多只能得到非“活性”聚双烯烃,因而无法进行“活性”高分子的一些典型反应,如嵌段、接枝及偶  相似文献   

5.
Grignard Metathesis polymerization (GRIM) for the synthesis of regioregular poly(3‐alkylthiophenes) proceeds via a “living” chain growth mechanism. Due to the “living” nature of this polymerization regioregular poly(3‐alkylthiophenes) with predetermined molecular weight, narrow molecular weight distributions and desired chain end functionality are now readily available. Allyl terminated poly(3‐hexylthiophene) was successfully used as a precursor for the synthesis of di‐block copolymers containing polystyrene. The addition of “living” poly(styryl)lithium to the allyl terminated regioregular poly(3‐hexylthiophene) generated the di‐block copolymer. Poly(3‐hexylthiophene)‐b‐polystyrene was also synthesized by atom transfer radical polymerization. Integration of poly(3‐hexylthiophene) in di‐block copolymers with polystyrene leads to the formation of nanowire morphology and self‐ordered conducting nanostructured materials.  相似文献   

6.
Polystyrene microspheres have been synthesized by the reversible addition-fragmentation chain transfer (RAFT) mediated dispersion polymerization in an alcoholic media in the presence of poly(N-vinylpyrrolidone) as stabilizer and 2,2′-azobisisobutyronitrile as a conventional radical initiator. In order to obtain monodisperse polystyrene particles with controlled architecture, the post–addition of RAFT agent was employed to replace the weak point from the pre-addition of RAFT. The feature of preaddition and postaddition of RAFT agent was studied on the polymerization kinetics, particle size and its distribution and on the particle stability. The living polymerization behavior as well as the particle stability was observed only in the postaddition of RAFT. The effects of different concentration on the postaddition of RAFT agent were investigated in terms of molecular weight, molecular weight distribution, particle size and its distribution. The final polydispersity index (PDI) value, particle size and the stability of the dispersion system were found to be greatly influenced by the RAFT agent. This result showed that the postaddition of RAFT agent in the dispersion polymerization not only controls the molecular weight and PDI but also produces stable monodisperse polymer particles.  相似文献   

7.
The atom transfer radical polymerization of styrene and methyl methacrylate with FeCl2/iminodiacetic acid as the catalyst system in bulk was successfully implemented at 70 and 110 °C, respectively. The polymerization was controlled: the molecular weight of the resultant polymer was close to the calculated value, and the molecular weight distribution was relatively narrow (weight‐average molecular weight/number‐average molecular weight ∼ 1.5). Block copolymers of polystyrene‐b‐poly(methyl methacrylate) and poly(methyl methacrylate)‐b‐poly(methyl acrylate) were successfully synthesized, confirming the living nature of the polymerization. A small amount of water added to the reaction system increased the reaction rate and did not affect the living nature of the polymerization system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4308–4314, 2000  相似文献   

8.
以偶氮二异丁腈为引发剂,CuBr2/bpy为催化体系,甲基丙烯酸缩水甘油酯(GMA)通过反向原子转移自由基聚合反应合成了聚甲基丙烯酸缩水甘油酯(PGMA),其结构经1H NMR,IR和GPC确证。聚合反应符合活性自由基聚合特征,在聚合过程中GMA转化率和PGMA分子量随反应时间的延长而增大,分子量分布较窄。  相似文献   

9.
Silica‐gel particles grafted with tetraethyldiethylenetriamine were synthesized as support for CuBr for the heterogeneous atom transfer radical polymerization of methyl methacrylate (MMA). The immobilized CuBr mediated a living polymerization of MMA, demonstrated by an increase in molecular weight with conversion and low polydispersity. An excessive amount of catalyst (typically, CuBr/initiator = 1.5) was required to achieve a living process because of the limited mobility of the supported catalyst. The silica‐gel concentration had a strong effect on the polymerization. The recycled catalyst still mediated a living process but showed a reduced catalytic activity due to the presence of Cu(II). After being regenerated by a reaction with Cu(0), the catalyst regained its activity. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1051–1059, 2001  相似文献   

10.
从二甲苯出发,经过溴甲基化反应、氧化反应、酯化反应和溴代反应,合成了一种四官能团的引发剂,4,6-二(溴甲基)-1,3-苯二甲酸二甲酯.用该引发剂引发苯乙烯进行原子转移自由基聚合,实验结果表明聚合反应具有活性自由基聚合的特征.通过苯乙烯的本体聚合反应获得了分子量可控、双酯基位于聚合物链中间的聚苯乙烯.经过水解反应,使聚合物中的双酯基被水解成双羧基,从而得到了结构对称的两亲性聚合物,双羧基聚苯乙烯.利用该聚合物具有分子识别的特性,与十二烷胺形成了离子键超分子化合物.此工作为超分子星形聚合物的设计合成提供了简便快捷的方法.  相似文献   

11.
以丙烯酰胺基偶氮苯(AAAB)为单体,二硫代苯甲酸异丙苯酯(CDB)为链转移剂,偶氮二异丁腈(AIBN)为引发剂,N,N-二甲基甲酰胺(DMF)为溶剂,利用可逆加成-断裂链转移(RAFT)聚合法合成了侧链含有偶氮苯基团的聚丙烯酰胺基偶氮苯(PAAAB),同时考察了反应温度、引发剂浓度、链转移剂浓度等因素对聚合反应的影响。利用FT-IR、1H NMR、GPC等对其结构进行了表征。结果表明,聚合反应动力学曲线呈良好的线性关系,分子量分布窄;随着[CDB]/[AIBN]比例的增大,聚合速率、分子量和分子量分布均下降。  相似文献   

12.
结合活性负离子聚合与原子转移自由基聚合(ATRP),采用机理转移法制备了一系列窄分布且分子量可控的星形梳状聚丁二烯-g-聚甲基丙烯酸甲酯接枝共聚物(SC-(PB-g-PMMA)).首先通过阴离子聚合,制备星形聚丁二烯,后经甲酸-过氧化氢原位环氧化对链中部分双键进行环氧化,再与原位生成2-溴异丁酸发生酯化反应,得到具有链中活性溴的星形大分子引发剂(SPB-Brn).然后,利用该大分子引发剂,采用CuCl/CuCl2/PMDETA催化体系,通过ATRP聚合单体MMA,合成出星形梳状SC-(PB-g-PMMA)聚合物.通过GPC,1H-NMR和FTIR等分析手段对合成的星形大分子引发剂及星形梳状聚合物进结构表征,证实得到目标产物,并同时研究了聚合物的热力学性质与溶液性质.  相似文献   

13.
The direct polymerization of acrylic acid (AA) in aqueous solution for high molecular weight by means of living radical polymerization is still difficult. Here, AA was polymerized homogeneously in water by a reversible addition-fragmentation transfer polymerization (RAFT) in the presence of a water-soluble trithiocarbonate as a RAFT agent. Various ratios [AA]:[RAFT agent] were investigated to aim at different molecular weights. The polymerization exhibited living free-radical polymerization characteristics at different ratios [AA]: [RAFT agent]: controlled molecular weight, low polydispersity and well-suited linear growth of the number-average molecular weight, M n with conversion. The chain transfer to solvent or polymer was suppressed during the polymerization process, thus high linear PAA with high molecular weight and low PDI can be obtained. Moreover, using the generated PAA as a macro RAFT agent, the chain extension polymerization of PAA with fresh AA displayed controlled behavior, demonstrated the ability of PAA to reinitiate sequential polymerization.  相似文献   

14.
丙烯腈可控/"活性"自由基聚合研究进展   总被引:4,自引:0,他引:4  
可控/"活性"自由基聚合能有效控制聚合物的分子量及其分布,并且能调控其微观拓扑结构。聚丙烯腈及其共聚物具有良好的成纤成膜性能,是一类应用十分广泛的聚合物。本文综述了可控/"活性"自由基聚合法合成聚丙烯腈及其共聚物的研究现状与进展,从氮氧自由基法(NMP)、引发转移终止剂法(iniferter)、原子转移自由基聚合(ATRP)和可逆加成-断裂链转移(RAFT)聚合等方面对丙烯腈均聚物和共聚物的合成研究作了全面的总结,提出了存在的问题,并且对今后的研究方向作了展望。  相似文献   

15.
Living radical polymerization of styrene in a miniemulsion by reversible addition–fragmentation chain transfer (RAFT) was successfully realized in the presence of beta-cyclodextrin (CD), using sodium dodecyl sulfate and hexadecane as surfactant and costabilizer, respectively. The drawback of instability (red layer formation) encountered in the living radical polymerization in emulsion or miniemulsion was overcome. The linear relationship between the monomer conversion and the molecular weight, as well as lower molecular weight distribution (MWD), shows that the polymerization process was under control. The addition of CD was found to have little influence on the polymerization rate. However, MWD of the polymer synthesized is obviously decreased. The mechanism of stability and controllability improvement in the presence of CD proposed that the complex formation between CD and RAFT agent or RAFT agent-ended oligomer increased their diffusion ability from monomer droplet to polymerization locus and improved the homogeneity of the RAFT agent level among the polymerization loci.  相似文献   

16.
To establish the optimum conditions for obtaining high molecular weight polyacetals by the self‐polyaddition of vinyl ethers with a hydroxyl group, we performed the polymerization of 4‐hydroxybutyl vinyl ether (CH2?CH? O? CH2CH2CH2CH2? OH) with various acidic catalysts [p‐toluene sulfonic acid monohydrate, p‐toluene sulfonic anhydride (TSAA), pyridinium p‐toluene sulfonate, HCl, and BF3OEt2] in different solvents (tetrahydrofuran and toluene) at 0 °C. All the polymerizations proceeded exclusively via the polyaddition mechanism to give polyacetals of the structure [? CH(CH3)? O? CH2CH2CH2CH2? O? ]n quantitatively. The reaction with TSAA in tetrahydrofuran led to the highest molecular weight polymers (number‐average molecular weight = 110,000, weight‐average molecular weight/number‐average molecular weight = 1.59). 2‐Hydroxyethyl vinyl ether, diethylene glycol monovinyl ether, cyclohexane dimethanol monovinyl ether, and tricyclodecane dimethanol monovinyl ether were also employed as monomers, and polyacetals with various main‐chain structures were obtained. This structural variety of the main chain changed the glass‐transition temperature of the polyacetals from approximately ?70 °C to room temperature. These polyacetals were thermally stable but exhibited smooth degradation with a treatment of aqueous acid to give the corresponding diol compounds in quantitative yields. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4053–4064, 2002  相似文献   

17.
The living/controlled copolymerization of methyl acrylate with 1‐alkenes and norbornene derivatives through several radical polymerization techniques has been achieved. These techniques include atom transfer radical polymerization, reversible addition–fragmentation transfer polymerization, nitroxide‐mediated polymerization, and degenerative transfer polymerization. These systems display many of the characteristics of a living polymerization process: the molecular weight increases linearly with the overall conversion, but the polydispersity remains low. Novel block copolymers have been synthesized through the sequential addition of monomers or chain extension. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6175–6192, 2004  相似文献   

18.
Reversible addition‐fragmentation chain‐transfer (RAFT) polymerization has been known as a convenient method for the synthesis of polymers of designed molecular structures. Of particular interest are bifunctional or multifunctional chain‐transfer agents (CTAs) which could be employed in the development of advanced materials via RAFT polymerization. In the present study, four bifunctional 2‐(alkoxycarbonothioylthio) RAFT CTAs with ? COOH functionalities containing methoxy, ethoxy, isopropoxy, and octyloxy groups, respectively, were synthesized and characterized by FTIR and NMR spectroscopy. Polymerizations of vinyl acetate using these CTAs exhibited increased molecular weight with consumption of monomer and relatively narrow dispersities, indicative of living polymerization behavior. The effect of the concentration of 2‐(ethoxycarbonothioylthio) acetic acid on the polymerization was examined, revealing that higher concentration of CTA led to lower molecular weight and narrower dispersity. As an example of the application of the synthesized bifunctional CTAs, TiO2‐poly(vinyl acetate) (PVAc) nanocomposites were synthesized via a one‐pot process and characterized by TGA, DSC, TEM, and affinity test, suggesting attachment of PVAc onto the nano‐TiO2 particles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 606–618  相似文献   

19.
设计并合成了一种新型含甲酰基同时又含β-蒎烯单元的新单体2-β-蒎氧基-5-乙烯基苯甲醛(POVB),选择苯基双硫代乙酸1-苯基乙酯(PEPDA)为RAFT试剂、以AIBN为引发剂、在60℃下THF中实现了POVB的"活性"/可控RAFT自由基聚合.单体浓度半对数ln([M]0/[M])与聚合时间符合线性关系,聚合过程呈现一级动力学特征;聚合物分子量(Mn)随单体转化率几乎线性增加,而且整个反应过程中分子量分布(Mw/Mn1.2)保持在较窄的范围.1H-NMR的分析进一步证实了聚合物链的末端精细结构.此外,CD谱结果表明手性单元β-蒎烯基能赋予聚合物以光学活性.  相似文献   

20.
This research has focused on the development of telechelic, aromatic amine functional, poly(dimethylsiloxane) oligomers without any aliphatic components in the polymer backbone. The intent is to produce flexible oligomers with enhanced thermal stability for incorporation into materials which will be processed at elevated temperatures. The poly(dimethylsiloxane)s have been synthesized using living polymerization of hexamethylcyclotrisiloxane with protected aniline derivatives as initiators and termination reagents for the reactions. Low molecular weight oligomers prepared using the living polymerization method can be easily converted to a range of higher, controlled molecular weight materials in redistribution reactions. A basic tetramethylammonium siloxanolate catalyst in conjunction with octamethylcyclotetrasiloxane has been used for the equilibration procedure. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号