首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
6aλ4-Thia-1,2,3,4,6-pentaazapentalenes 3 are conveniently prepared by reacting 5-imino-Δ3-1,2,4-thiadi-azolines 2 with aromatic diazonium tetrafluoroborates in the presence of pyridine. The first crystal structure analysis of this class of compounds 3g is described and shows properties characteristic of a thiapentalene structure; i.e. long N-S-N bonds (1.85 and 1.975 Å) in a nearly linear arrangement (164°) and comprising a heterobicycle which is strictly planar.  相似文献   

2.
From the crude product of the synthesis of the dithiadiphosphetane [RP(S)S]2 (with R = 2,4,6-iPr3C6H2), the trans-oxathiadiphosphetane has been isolated, C30H40OP2S3. X-ray structure analysis and mass spectroscopic investigations give unequivocal evidence for this structure: monoclinic, C2/c (no. 15), a = 13.066(8), b = 21.726(8), c = 12.070(6) Å, β = 103.54(10)°, V = 3331 Å3, Z = 4, and Dc = 1.158 g/cm3. The asymmetric unit consists of half the formula unit. Solid-state 31P NMR spectra give information about the chemical shift anisotropy. Results of IGLO calculations of the 31P nuclear magnetic shielding tensor agree satisfactorily with the experimental data. Monitoring the reaction of several dithiadiphosphetanes with benzophenone in solution by 31P NMR spectroscopy indicates that additional oxathiadiphosphetanes as well as thiotrimetaphosphonates are present. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The results of seven cocrystallization experiments of the antithyroid drug 6‐methyl‐2‐thiouracil (MTU), C5H6N2OS, with 2,4‐diaminopyrimidine, 2,4,6‐triaminopyrimidine and 6‐amino‐3H‐isocytosine (viz. 2,6‐diamino‐3H‐pyrimidin‐4‐one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen‐bonding site, while the three coformers show complementary DAD hydrogen‐bonding sites and therefore should be capable of forming an ADA/DAD N—H...O/N—H...N/N—H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–1‐methylpyrrolidin‐2‐one (1/1/2), C5H6N2OS·C4H6N4·2C5H9NO, (I), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine (1/1), C5H6N2OS·C4H6N4, (II), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylacetamide (2/1/2), 2C5H6N2OS·C4H6N4·2C4H9NO, (III), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylformamide (2/1/2), C5H6N2OS·0.5C4H6N4·C3H7NO, (IV), 2,4,6‐triaminopyrimidinium 6‐methyl‐2‐thiouracilate–6‐methyl‐2‐thiouracil–N,N‐dimethylformamide (1/1/2), C4H8N5+·C5H5N2OS·C5H6N2OS·2C3H7NO, (V), 6‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylformamide (1/1/1), C5H6N2OS·C4H6N4O·C3H7NO, (VI), and 6‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–dimethyl sulfoxide (1/1/1), C5H6N2OS·C4H6N4O·C2H6OS, (VII). Whereas in cocrystal (I) an R22(8) interaction similar to the Watson–Crick adenine/uracil base pair is formed and a two‐dimensional hydrogen‐bonding network is observed, the cocrystals (II)–(VII) contain the triply hydrogen‐bonded ADA/DAD N—H...O/N—H...N/N—H...S synthon and show a one‐dimensional hydrogen‐bonding network. Although 2,4‐diaminopyrimidine possesses only one DAD hydrogen‐bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).  相似文献   

4.
The reactions of 2-trans-6-N4P4(NHPrn)2Cl6 (2), which was obtained from N4P4Cl8 (1) and n-propylamine, with pyrrolidine and t-butylamine in different solvents have been studied. Compound (2) gave two different products, namely monocyclic (3 and 5) and bicyclic (4 and 6) phosphazenes. Compounds (2–6) have been characterized by elemental analysis, IR, 1H-, 13C-, 31P NMR, HETCOR and MS and the structure of compound (5) has been examined crystallographically. The bicyclic phosphazene (6) is the first exciting example of bicyclic phosphazenes containing chlorine atoms, in the literature. The formation mechanisms of bicyclic phosphazenes are re-considered by taking into account the synthesis of compound (6), which contains three stereogenic phosphorus atoms. Compound (5) crystallizes in the monocyclic space group P21/n with a=13.974(2), b=17.836(5), and c=18.683(4) Å, β=98.50(1)°, V=4605.4(2) Å3, Z=4 and Dx=1.051 g cm−3. It consists of a non-centrosymmetric, non-planar phosphazene ring in a saddle conformation, with two n-propylamino (in 2-trans-6 positions) and six bulky t-butylamino side groups. The bulky substituents are instrumental in determining the molecular geometry.  相似文献   

5.
6.
Spontaneous photo and thermal polymerization of N-vinylcarbazole (VCZ)–acrylonitrile (AN), VCZ–acetonitrile, AN-N-ethylcarbazole, and AN-ferrocene were studied. These combinations of electron donor with acceptor were thermally rather stable but showed prominent photopolymerizability when the systems were irradiated by near ultraviolet light. The VCZ–AN system showed multireactivity producing VCZ polymer and a copolymer of VCZ with AN. The composition of copolymer was approximately the same as that of polymer produced in radical copolymerization. The effects of additives (DPPH, NH3, H2O, air) indicated simultaneous occurrence of cationic and radical polymerization in the AN–VCZ and acetonitrile–VCZ systems. The results were interpreted on the assumption of initial formation of a cation radical–anion radical pair. The ratio of cationic to radical polymerization differed for photo and thermal polymerization. In no case was anionic polymerization detected.  相似文献   

7.
π‐Conjugated donor–acceptor systems based on dithiafulvene (DTF) donor units and various acceptor units have attracted attention for their linear and nonlinear optical properties. The reaction between p‐benzoquinone and a 1,3‐dithiole phosphonium salt, deprotonated by lithium hexamethyldisilazide (LiHMDS), gave a product mixture from which the Michael adduct [systematic name: dimethyl 2‐(3‐hydroxy‐6‐oxocyclohexa‐2,4‐dien‐1‐ylidene)‐2H‐1,3‐dithiole‐4,5‐dicarboxylate], C13H10O6S2, was isolated. It is likely that one of the unidentified products obtained previously by others from related reactions could be a similar Michael adduct.  相似文献   

8.
9.
10.
We present a study of the optical, structural and device properties of a polyfluorene (PFM)‐based (PFM‐F8BT‐PFM) donor–acceptor triblock copolymer for use in an organic solar cell. Neutron reflectivity is employed to probe the vertical composition profile before and after thermal annealing while the crystallinity was examined using grazing incidence wide‐angle X‐ray. The absorption spectra and photoluminescence emission for the triblock and analogous blend of PFM with F8BT reveal a greater degree of intermixing in the triblock. However, the triblock copolymer exhibits exciplex emission, which necessitates a geminate polar pair; long‐lived exciplex states are detrimental in organic photovoltaic devices. The triplet yield in the triblock and the blend is estimated using photoinduced absorption, with the triblock copolymer generating a triplet population 20 times that of the blend. This is far from ideal as triplets are wasted states in organic photovoltaic devices and they can also act as scavengers of polarons reducing the efficiency even more. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1705–1718  相似文献   

11.
12.
A new set of push‐pull type 2D‐conjugated polymers (P1–P4) were designed and synthesized where A1, A2 (oxygen analogues) and A3, A4 (sulfur analogues) are electron deficient units used as co‐monomers. On introduction of new repeating units into the polymer backbone, significant changes were observed in optoelectronic properties. Furthermore, the heteroatom exchange in new repeating units has also brought notable changes in photophysical properties, in particular P1 and P2 (oxygen analogues) showed bathochromic shift in UV‐vis absorption spectra and deeper HOMO energy levels than P3, P4 (sulfur analogues). Interestingly P1, P3 absorption spectra shows a vibronic shoulder (659, 652 nm) peak in lower energy region, and this might originated from non‐covalent interactions between the electron rich and electron deficient units. In addition, the systematic investigation of these polymers with additive and solvent treatment, yielded in enhanced power conversion efficiency of 4.29% for P3‐based devices in bulk heterojunction organic solar cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2668–2679  相似文献   

13.
The 1,2-azaphosphinine, 9 , and the 1,3-diphosphinine, 10 , can be isolated from a mixture resulting from the reaction of 1,1,3,3-tetrakis(dimethylamino)-1λ5,3λ5-diphosphete, 1 , and ethyl isothiocyanate. The reaction of 1 with phenyl isothiocyanate yields the 1,2-azaphosphinine, 16 . Mechanisms for the formation of the compounds 9 , 10 , and 16 are suggested. The properties, the NMR, mass, and IR spectra, and the molecular and crystal structures of 9 and 10 are described and discussed.  相似文献   

14.
Energy transfer was studied for donor–mediator–acceptor systems in uniaxially stretched polymer films. The systems differ in the ability of mediator transition moment to orientate in the matrix. It was found that acceptor fluorescence remains polarized in the stretched matrix irrespectively of mediator. This means that information on the orientation of electric vector of the exciting light was conserved after energy transfer. In disordered system sensibilized fluorescence of mediator and acceptor is strongly depolarized. The effect of transition moments correlation on κ2 in the stretched matrix is presented using Monte-Carlo simulation.  相似文献   

15.
16.
17.
Through the Stille coupling polymerization, a series of soluble acceptor/donor quinoxaline/thiophene alternating conducting polymers with a hole‐transporting moiety of carbazole as a side chain ( PCPQT ) has been designed, synthesized, and investigated. The UV–vis measurement of the charge‐transferred type PCPQT s of different molecular weights with low polydispersity exhibits a red shifting of their absorption maximum from 530 to 630 nm with increasing chain length (Mn: from 1100 to 19,200). The HOMO and LUMO energy levels of PCPQT can be determined from the cyclic voltammetry measurement to be ?5.36 and ?3.59 eV, respectively. Solar cells made from PCPQT/PCBM bulk heterojunction show a high open‐circuit voltage, Voc of ~0.75 V, which is significantly higher than that of a solar cell made from conventional poly(3‐hexyl thiophene)/ PCBM as the active polymer PCPQT has lower HOMO level. Further improvements are anticipated through a rational design of the new low band‐gap and the structurally two‐dimensional donor–acceptor conducting polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1607–1616, 2010  相似文献   

18.
The Förster resonance energy transfer (FRET) properties in poly(methyl methacrylate) copolymers containing 2‐(pyridine‐2‐yl) thiazole dyes were studied upon systematic variation of the donor‐to‐acceptor ratio. To this end, 2‐(pyridine‐2‐yl) thiazole dyes specially designed for the usage as energy donor and acceptor molecules were incorporated within one polymer chain. Poly(methyl methacrylate) copolymers containing these donor and acceptor dyes were synthesized using the RAFT polymerization method. Copolymers with a molar mass (Mn) of nearly 10,000 g/mol were achieved with dispersity index values (?) under 1.3. The presented copolymers act as a model system for the FRET investigation. Förster resonance energy transfer properties of the copolymers are characterized by steady state as well as time resolved fluorescence spectroscopy. The results indicate that the energy transfer rates and the transfer efficiencies are tunable by variation of the donor‐acceptor‐ratio. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4765–4773  相似文献   

19.
Block copolymers with donor and acceptor conjugated polymer blocks provide an approach to dictating the donor–accepter interfacial structure and understanding its relationship to charge separation and photovoltaic performance. We report the preparation of a series of donor‐linker‐acceptor block copolymers with poly(3‐hexylthiophene) (P3HT) donor blocks, poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(thiophen‐5‐yl)‐2,1,3‐benzothiadiazole]‐2′,2″‐diyl) (PFTBT) acceptor blocks, and varying lengths of oligo‐ethylene glycol (OEG) chains as the linkers. Morphological analysis shows that the linkers increase polymer crystallinity while a combination of optical and photovoltaic measurements shows that the insertion of a flexible spacer reduces fluorescence quenching and photovoltaic efficiencies of solution processed photovoltaic devices. Density functional theory (DFT) simulations indicate that the linking groups reduce both charge separation and recombination rates, and block copolymers with flexible linkers will likely rotate to assume a nonplanar orientation, resulting in a significant loss of overlap at the donor–linker–acceptor interface. This work provides a systematic study of the role of linker length on the photovoltaic performance of donor–linker–acceptor block copolymers and indicates that linkers should be designed to control both the electronic properties and relative orientations of conjugated polymers at the interface. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1135–1143  相似文献   

20.
We have used Grignard metathesis polymerization to prepare poly(3‐hexylthiophene)‐based copolymers containing electron‐withdrawing 4‐tert‐butylphenyl‐1,3,4‐oxadiazole‐phenyl moieties as side chains. We characterized these copolymers using 1H and 13C nuclear magnetic resonance spectroscopy, thermogravimetric analysis, and gel permeation chromatography. The band gap energy of copolymer was determined from the onset of the optical absorption. The quenching effects were observed in the photoluminescence spectra of the copolymers incorporating pendant electron‐deficient 1,3,4‐oxadiazole moieties on the side chains. The photocurrents of devices were enhanced in the presence of an optimal amount of the 1,3,4‐oxadiazole moieties, thereby leading to improved power conversion efficiencies. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3331–3339, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号