首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Differential thermal analysis (DTA) of some commercial nylons has disclosed some anomalous phenomena with respect to the glass transition, generally considered to occur at 40–50°C. On the first heat cycle the transition occurs normally. On cooling, however, no corresponding transition occurs, and on an immediate rerun the transition has disappeared. If another DTA thermogram is made after a few hours, the transition begins to reappear, but at a temperature lower by a few degrees. After about five days rest, the transition is again normal in size and temperature. On annealing at 75°C, the 43°C transition is pushed up to about 92°C. On resting after annealing, transitions appear at both 40 and 92°C. These phenomena are explained in terms of the slow formation of a hydrogen-bonded network in the amorphous regions of the polymer. It is the disruption of this network that is normally considered to be the glass transition in nylons. The network is slow in re-forming because of problems involved in matching up potential hydrogen-bonding sites, which are, of course, distributed at intervals along the polymer chain. The temperature at which the network is disrupted is apparently dependent not so much on the ratio of bonding to nonbonding sites, as on the temperature at which it was formed.  相似文献   

2.
3.
The paper presents the thermal properties of fibres made of a modified polyimideamide. The effects of as-spun draw ratio and deformation during the fibre drawing stage on the structure, thermal properties, moisture absorption and tenacity of the obtained fibres have been determined. Based on the findings obtained by the DTA and DSC methods, it has been found that the modification of the polymer under investigation causes its glass transition temperature to decrease through the increase of molecular mobility. At the same time, the heat-resistant fibres with the amorphous oriented structure are characterized by a tenacity of 16 cN/tex, good absorption properties and increased porosity. The thermal stability indices of the examined fibres have been determined on the basis of thermogravimetric curves obtained both under air and inert gas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
We have investigated the physical properties of proton conducting polymer membranes based on a protic ionic liquid (IL). Properties such as ionic conductivity, melting point of the polymer phase, and glass transition temperature of the liquid phase are studied as a function of IL/polymer ratio and temperature. We observe an increased thermomechanical stability of the membrane with increasing polymer content. However, there is a concomitant decrease in the conductivity with increasing polymer content. This decrease is larger than what can be expected from the dilution of the conducting IL by the insulating polymer matrix. The origin of this decrease can be caused both by the morphology of the membrane and by interactions between the polymer matrix and the ionic liquid. We find a change in the glass transition temperature and in the temperature dependence of the conductivity with increasing polymer content. Both effects can be related to the physical confinement of the IL in the polymer membrane.  相似文献   

5.
The mesomorphic properties have been studied as a function of the degree of polymerization for certain 'side-on fixed' polyacrylates. A peculiar evolution of the clearing temperature, TIN, as well as of the glass transition temperatures, Tg, revealed that beyond a certain backbone length, TIN and Tg decrease as the main chain length increases. The nematic 'jacketed' structure of these polymers induces a more or less high anisotropy of the polymer backbone conformation in the nematic phase and this can counterbalance the usual effect of an increase in the degree of polymerization on the thermodynamical properties of these systems. This evolution allows us to explain the unusual diamagnetic anisotropy anomaly observed as a function of temperature for this type of polymer.  相似文献   

6.
A new fluorinated polystyrene bearing a p-sulbstiuted perfluoro[1-(2-fluorosulfonylethoxy)]ethyl group was synthesized via one-electron oxidation of polystyrene by perfluoro[2-(2-fluorosulfonylethoxy)]propionyl peroxide at different peroxide to polystyrene molar ratios.The yield of perfluoroalkylation decreases with the increase of the reactant molar ratio.The modified polymer has been characterized by various techniques:the ring pefluoro[1-(2-fluorosulfonylethoxy)]ethylation has been proved by FT-IR and ^19FNMR;the X-ray photoelectron spectra(XPS) show the maximum binding energy of F18,O18,C18(two kinds of carbon atoms,namely C-H and C-F)and S2p,respectively; desulfonylation of the fluorinated polystyrene appearing at 217℃ has been found by its thermogravimetric analysis (TGA).The determinations of contact angle,refractive index and glass transition temperature of the modified polymer have disclosed that when the contact angle increases with the increase of the molar ratio,the refractive index and glass transition temperature decrease.The polydispersity values indicate that the degradation of the polymer chains did not occur during the reaction.  相似文献   

7.
The influence of the curing conditions and dibutyl phthalate additions on the physicomechanical properties of cured polyepoxides based on ED-20 resin and 4,4'-diaminodiphenylmethane curing agent was examined. An increase in the curing temperature over 150°С does not noticeably influence the physicomechanical properties of the cured resin, and keeping of the reaction mixture at 180°С for 12 h leads to a considerable decrease in the glass transition temperature of the polymer. Addition of dibutyl phthalate in concentrations of up to 10 wt % decreases the glass transition teperature of the polymer by 44°C, but with increasing concentration of dibutyl phthalate the elastic modulus increases and the breaking strain slightly decreases. The dependence of the ultimate strength on the dibutyl phthalate concentration passes through a maximum at 3 wt % dibutyl phthalate.  相似文献   

8.
The PVT properties of crosslinked polystyrene samples containing various amounts of dodecane were measured. The Tait equation was used to describe the PVT behavior of each system in both the glassy and rubbery regions. The glass transition temperature was determined from the abrupt change of the thermal expansion coefficient. Increase in the dodecane content in the samples resulted in a significant decrease of the difference between the expansion coefficients in the glassy and rubbery regions. Addition of dodecane lowered the glass transition temperature linearly. However, the dependence of the glass transition temperature on pressure was not affected by the presence of dodecane in the polymer samples. Above the glass transition temperature, the volume of the swollen polymer, Vm, could be determined by simple addition of the volumes of the pure components at the appropriate temperature and pressure; the volume change of mixing, δVm, was independent of temperature and pressure. Below the glass transition temperature, volume additivity of the two components was also applicable after appropriate adjustment of the glass transition temperature of the polymer to that of the dodecane/polymer samples. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
The polyethersulfone (PES)-zeolite 3A, 4A and 5A mixed matrix membranes (MMMs) were fabricated with a modified solution-casting procedure at high temperatures close to the glass transition temperatures (Tg) of polymer materials. The effects of membrane preparation methodology, zeolite loading and pore size of zeolite on the gas separation performance of these mixed matrix membranes were studied. SEM results show the interface between polymer and zeolite in MMMs experiencing natural cooling is better (i.e., less defective) than that in MMMs experiencing immediate quenching. The increment of glass transition temperature (Tg) of MMMs with zeolite loading confirms the polymer chain rigidification induced by zeolite. The experimental results indicate that a higher zeolite loading results in a decrease in gas permeability and an increase in gas pair selectivity. The unmodified Maxwell model fails to correctly predict the permeability decrease induced by polymer chain rigidification near the zeolite surface and the partial pore blockage of zeolites by the polymer chains. A new modified Maxwell model is therefore proposed. It takes the combined effects of chain rigidification and partial pore blockage of zeolites into calculation. The new model shows much consistent permeability and selectivity predication with experimental data. Surprisingly, an increase in zeolite pore size from 3 to 5 Å generally not only increase gas permeability, but also gas pair selectivity. The O2/N2 selectivity of PES-zeolite 3A and PES-zeolite 4A membranes is very similar, while the O2/N2 selectivity of PES-zeolite 5A membranes is much higher. This implies the blockage may narrow a part of zeolite 5A pores to approximately 4 Å, which can discriminate the gas pair of O2 and N2, and narrow a part of zeolites 3A and 4A pores to smaller sizes. It is concluded that the partial pore blockage of zeolites by the polymer chains has equivalent or more influence on the separation properties of mixed matrix membranes compared with that of the polymer chain rigidification.  相似文献   

10.
The thermal behavior of random copolyamides which are used as model polymers with hydrogen bonds has been investigated by differential scanning calorimetry (DSC), x-ray diffraction, and infrared spectroscopy. The quenched copolyamides have only halo patterns in their x-ray diffraction photographs. A random copolymer of nylons 6, 66, and 610 (in a composition ratio of 3: 4: 3) was found to have 20% of unbonded amide groups immediately after quenching. When the sample was kept at the glass transition temperature (20°C), no change in x-ray diffraction was observed after the treatment. The free amide band in the infrared spectrum at 3450 cm-1, however, was decreased in intensity by keeping the sample at the glass transition temperature. The transition peak height observed in a DSC curve also increased in the same experiment. Large glass transition peaks were found in DSC curves after annealing of the random copolyamides in the vicinity of the glass transition temperature. It is probable that the free amide groups in the amorphous chains were rearranged and formed new hydrogen bonds during the heat treatment at the glass transition temperature. Packing and restriction of the amorphous chains due to the increase in hydrogen bonding seemed to increase the height of the transition peak in a DSC curve. It is inferred from the above results that in the case of the random copolyamide, structures corresponding to a given enthalpy of the glassy state can be related to the number of hydrogen bonds.  相似文献   

11.
The glass transition temperature of polyethylene/graphene nanocomposites was investigated by molecular dynamic simulation. The specific volumes of three systems(polyethylene, polyethylene with a small graphene sheet and two small graphene sheets) were examined as a function of temperature. We found that the glass transition temperature decreases with increasing graphene. Then the van der Waals energy changes obviously with increasing graphene and the torsion energy also plays an important role in the glass transition of polymer. The radial distribution functions of the inter-molecular carbon atoms suggest the interaction between PE and graphene weakens with increasing graphene. These indicate that graphene can prompt the motion of chain segments of polymer and decrease the glass transition temperature (Tg) of polymer.  相似文献   

12.
聚氯乙烯/聚丙烯酸丁酯/白泥纳米复合材料的研究   总被引:6,自引:0,他引:6  
通过多步交换反应及扩散-聚合的方法,使聚丙烯酸丁酯被嵌入到改性层状结构的白泥层间,得到白泥-聚丙烯酸丁酯纳米复合物的微米粒子;然后将聚氯乙烯与白泥-聚丙烯酸丁酯进行熔融共混,制得具有一一特性的有机-无机纳米复合材料,并对复合材料的缺口冲击强度及动态力学性能进行了研究,结果表明,白泥-聚丙烯酸酯含量为5.0wt%时,复合材料的力学性能最佳;聚氯乙烯与高含量的白泥-聚丙烯酸丁酯(分别为25.0wt%和50.0wt%)形成的复合材料,在聚氯乙烯的玻璃化转变温度之前,储能模量出现先降低而后增加的过程。  相似文献   

13.
The effect of dissolved carbon dioxide on the glass transition temperature of a polymer, PMMA, has been investigated using molecular probe chromatography. The probe solute was iso-octane, and the specific retention volumes of this solute in pure PMMA and mixtures of PMMA with CO2 were measured over a temperature range of 0 to 180°C and CO2 pressures from 1 to 75 atm. The amount of CO2 dissolved in the polymer was calculated from a model fit to previously published solubility data determined chromatographically. Classical van't Hoff-type plots were used to determine the glass transition temperature of CO2-impregnated PMMA from low pressure up to 46 atm of CO2. Solvent-induced plasticization was observed with the glass transition temperature decreasing by about 40°C. At some pressures, glass transitions at low temperatures could not be determined from the van't Hoff plots because of the proximity of the polymer glass transition temperature to the gas–liquid transition temperature for CO2. For these pressures, a new method was developed to determine the glass transition composition. The glass transition pressure was then calculated from the measured composition and temperature using an isotherm model. In every case, the glass transition temperature decreased linearly with increasing concentration of CO2 in the polymer. However, at higher compositions, the glass transition pressure decreased with increasing composition and decreasing temperature. The observed retention volume of iso-octane with PMMA in a glassy state was correlated with an adsorption model developed from a theory for liquid–solid chromatography derived by Martire. This model accurately described the observed decrease in retention of iso-octane by adsorption on the surface of glassy PMMA with increasing concentration of CO2 dissolved in the polymer. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2537–2549, 1998  相似文献   

14.
The preparation of poly(ethylene glycol‐co‐cyclohexane‐1,4‐dimethanol terephthalate)/layered silicate nanocomposites via a melt‐intercalation technique is reported. Layered silicates modified with different alkyl ammonium intercalants have been used for this purpose. A comparison is made between carefully chosen pairs of the nanocomposites, the choice depending on the cation‐exchange capacity or the intercalant concentration of the organically modified montmorillonite, to study the effects of the molecular size and molecular structure of the intercalant. The structure of the nanocomposites is characterized with wide‐angle X‐ray diffraction. The presence of well‐defined diffraction peaks and an observed increase in the interlayer spacing in the nanocomposites imply the formation of an intercalated hybrid. To investigate the viscoelastic behavior, these nanocomposites are also subjected to dynamic mechanical analysis. The dynamic mechanical properties show an increase in the storage modulus of the nanocomposites over the entire temperature range studied (except in the transition region from 68 to 78 °C) in comparison with that of the pristine polymer. The size of the intercalant molecule and the presence of functional groups capable of forming favorable interactions with the polymer govern the amount of polymer infiltrating the clay gallery space and control the increase in the modulus of the nanocomposite. The tan δ peak signifying the glass‐transition temperature shifts to lower temperatures in the nanocomposites. Interestingly, the nanocomposites show less damping than the pristine polymer. This behavior is understood in terms of the confinement of the polymer chains in the clay interlayer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3102–3113, 2003  相似文献   

15.
We studied the effect of changing temperature on the mechanical properties of nanosized poly(methyl methacrylate) wires fabricated by two-photon fabrication. At around room temperature, the nanowires showed a transition temperature where the shear modulus suddenly changed. This transition temperature was observed to decrease more than 40 K by decreasing the radius of the nanowires from 450 to 150 nm. This size is several times larger in nanowires than reported values of polymer thin film thickness showing a depression of the glass transition temperature.  相似文献   

16.
Nuclear magnetic resonance of poly-β-alanine samples differing in solubility in water was studied over a wide temperature range as part of an investigation of their physical properties. Water-soluble poly-β-alanine has more branches and a lower degree of crystallinity than water-insoluble poly-β-alanine. NMR spectra of poly-β-alanine show one component at 77°K. which splits into two components, broad and narrow, at room temperature. Two transition regions were observed in curves for line width and second moment versus temperature. The higher transition temperature, corresponding to the glass transition of the polymer, appears to decrease with increasing water content. The second moment for the water-soluble polymer differs from that of the water-insoluble polymer at 77°K. This is interpreted in terms of the difference in the degree of crystallinity of the polymers.  相似文献   

17.
The influence of annealing between the Curie transition and the melting point of solvent cast polyvinylidene fluoride trifluoroethylene copolymer films on the crystalline structure, mechanical and electrical properties, and oxygen permeability is investigated. Annealing leads to remarkable changes in the structure and properties of the copolymer, within the first four hours of treatment, and with kinetics depending on the temperature. The crystallinity increases by 19% (relative), resulting in a 10 K increase in the Curie transition, a 4 K increase of the melting temperature and a 2 K decrease in the glass transition temperature. A crystalline phase transition from the paraelectric α‐phase to the ferroelectric β‐phase is also evidenced using in‐situ X‐ray diffraction. The elastic modulus is found to increase by more than three‐fold at room temperature and the loss peak at the glass transition is considerably reduced. The piezoelectric coefficient is found to increase by 40% and the dielectric properties are significantly changed. The most remarkable influence is the ten‐fold reduction of the oxygen permeability, with a drastic reduction of the activation energy for oxygen transport. The improvement in oxygen barrier properties of the annealed copolymer is attributed to the restricted mobility of oxygen molecules in the semicrystalline polymer with nanometer sized crystallites. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 496–506  相似文献   

18.
聚苯基单醚喹噁啉薄膜的性能与物理老化   总被引:1,自引:0,他引:1  
研究了物理老化对聚苯基单醚喹啉薄膜的结构与力学性能的影响 .用差示扫描量热计 (DSC)及正电子湮没寿命谱 (PALS)方法表征了两种不同物理老化条件试样的凝聚结构以及自由体积的差别 .结果表明 ,物理老化使聚苯基单醚喹啉薄膜玻璃化转变温度移向高温 ,在其末端出现热焓吸收峰 ,分子链堆砌紧密使自由体积减小 ,分子可动性降低 .用动态力学分析 (DMTA)以及静态拉伸性能测试等方法研究了两类试样的力学性能 ,结果表明 ,物理老化后 ,试样的动态储能模量稍有增加 ,力学损耗降低 .而静态拉伸实验的断裂应变降低 ,屈服应力增加 ,断裂能降低 ,试样在宏观上由韧性断裂变为明显的脆性断裂 .  相似文献   

19.
In this work, ABC-type triblock copolymer grafted onto the surface of the MWCNT/acid functionalized MWCNT (MWCNT-COOH) composites were prepared and the properties of nanocomposites were characterized extensively using differential scanning calorimetry (DSC), scanning electronic microscopy (SEM), thermogravimetric analysis (TGA), ac electrical conductivity and dielectrical measurements.

DSC study showed that the glass transition temperatures of the nanocomposites are a some higher than that of the matrix polymer. The increase in oxidized MWCNT in the nanocomposite improved the thermal stability of the composite, according to initial decomposition temperatures. The ac electrical conductivity has increased moderately with increasing frequency, but has increased slowly with increase in the oxidized MWCNT content in the nanocomposites. The electrical conductivity increases slowly with increasing temperature to about the glass transition temperature, then it increases faster. The dielectric constants for the matrix polymer and all the composites decreases slightly with increasing frequency from 0.1 kHz to 2.0 kHz. The dielectric constant increases slightly with increasing temperature up to about the glass transition temperature region and then the increase in temperature is accelerated the increase in the dielectric constant.  相似文献   

20.
Covalently crosslinked polyurethane/urea polymers were synthesized using diamine monomers modified with pendant glucose groups and 2,4‐toluene diisocyanate, poly(ethylene glycol) (PEG), and 1,1,1‐tris(hydroxymethyl)ethane (triol) comonomers. The polymers showed shape memory behavior with a switching temperature dependent on the glass transition temperature. The glass transition temperature is tuned by varying the mole ratio between the glucose‐diamine and PEG used in the polymerization. Increasing PEG content resulted in decreasing glass transition temperature, and a glass transition temperature of 39 °C, close to physiological temperatures, was obtained. The fixed shape showed gradual shape recovery behavior, but a fixity of 70% was achieved when the material was stored at 25 °C. The polymer recovered to the permanent shape when heated to 50 °C. Finally, the surface of a film of the polymer can be sulfated to achieve increased blood‐compatibility without sacrificing the shape memory properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2252–2257  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号