首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal chemical characteristics of the α and β modifications of Zn2V2O7 are calculated based on in situ high-temperature X-ray measurements. The expansion of the structure is found to be strongly anisotropic up to the negative volumetric thermal expansion of the α-Zn2V2O7 unit cell in the temperature range of 300–600°С, α V =–17.94 × 10–6 1/K. The transformations of the “hard” and “soft” sublattices with an increase temperature and at the phase transition are considered in detail. It is shown that the negative volumetric thermal expansion of α-Zn2V2O7 is due to the degeneracy of the zigzag-like shape of zinc–oxygen columns at constant distances between their vertices.  相似文献   

2.
The a, b, c lattice parameters of a [(CH3)2NH2]2 · CuCl4 crystal have been measured by the X-ray diffraction method within the temperature range of 100–300 K. The temperature dependences of thermal expansion coefficients αa = f(T), αb = f(T), and αc = f(T) along the principal crystallographic axes and thermal expansion coefficient of the unit-cell volume αV = f(T) are determined. It is found that all the three parameters, a, b, and c, vary with temperature in a complicated way and show jumplike anomalies in the a = f(T), b = f(T), and c = f(T) curves at phase-transition temperatures T c1 = 255 K and T c2 = 279 K. An incommensurate phase with the modulation wave vector q i = (1/2 + δ)(a* + c*) is revealed in the temperature range 279–296 K. It is shown that the incommensurability parameter δ increases with an increase in temperature.  相似文献   

3.
The crystal structure of β‐CsB5O8 has been determined from X‐ray powder diffraction data using synchrotron radiation: Pbca, a = 7.8131(3) Å, b = 12.0652(4) Å, c = 14.9582(4) Å, Z = 8, ρcalc = 2.967 g/cm3, R‐p = 0.076, R‐wp = 0.094. β‐CsB5O8 was found to be isostructural with β‐KB5O8 and β‐RbB5O8. The crystal structure consists of a double interlocking framework built up from B‐O pentaborate groups. The crystal structure exhibits a highly anisotropic thermal expansion: αa = 53, αb = 16, αc = 14 · 10‐6/K; the anisotropy may be caused by partial straightening of the screw chains of the pentaborate groups. The similarity of the thermal and compositional (Cs‐Rb‐K substitution) deformations of CsB5O8 is revealed: increasing the radius of the metal by 0.01 Å leads to the same deformations of the crystal structure as increasing the temperature by 35°C. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
To determine the coefficient of thermal expansion of trigonal langasite (La3Ga5SiO14) the two independent lattice parameters a and c are measured over a temperature range of 800 °C using X‐ray diffraction on single crystal samples. From the given nonlinear temperature dependence the linear and quadratic thermal coefficients of expansion α11, β11 and α33, β33 for the two lattice parameters a and c could be deduced. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The temperature dependent structural phase transition from the tetragonal chalcopyrite like structure to the cubic sphalerite like structure in CuInSe2 was investigated by in‐situ high temperature synchrotron radiation X‐ray diffraction. The data were collected in 1K steps during heating and cooling cycles (rate 38 K/h). The Rietveld analysis of the diffractograms led us to determine the temperature dependence of the lattice parameters, including the tetragonal deformation, |1‐η|, and distortion |u‐¼| (η=c/2a, a and c are the tetragonal lattice constant; u is the anion x‐coordinate). The thermal expansion coefficients αa and αc of the tetragonal lattice constant which are related to the linear thermal expansion coefficient αL were obtained, as were αa of the cubic lattice constant, also αu and αη. The transition temperature is clearly identified via a strong anomaly in αL. The temperature dependence of the anion position parameter was found to be rather weak, nearly αu∼0, whereas αη increases slightly. However, both increase strongly when approaching to within 10 K of the transition temperature (the critical region) and |1‐η| as well as |u‐¼| go to zero with |T‐Ttrans|0.2 approaching the phase transition. The cation occupancy values, derived from the Rietveld analysis, remain constant below the critical region. Close to the transition temperature, the number of electrons at the Cu site increases with a dercrease in the number of electrons at the In site with increasing temperature, indicating a Cu‐In anti site occupancy, which is assumed to be the driving force of the phase transition. At the transition temperature 67% of Cu+ were found to occupy the Me1 site with a corresponding 67% of In3+ at the Me2 site. Although full disorder is reached with 50%, this level seems to be high enough that the phase transition takes place. The order parameter of the phase transition, goes with |T‐Ttrans|β to zero with the critical exponent β=0.35(7) which is in good agreement to the critical exponent β=0.332 calculated for order‐disorder transitions according to the Ising model. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
[(CH3)2NH2]5Cd3Cl11 crystals are grown by the method of isothermal evaporation from saturated aqueous solutions containing dimethylamine and cadmium chlorides, [(CH3)2NH2]Cl and CdCl2.5H2O. The crystal grown are studied by the X-ray diffraction method. It is established that the crystals are orthorhombic with the unit-cell parameters at room temperature a = 18.115 ± 0.004 Å, b = 11.432 ± 0.002 Å, and c = 15.821 ± 0.003 Å. The unit-cell parameters a, b, and c of the [(CH3)2NH2]5Cd3Cl11 crystals are measured as functions of temperature in the temperature range 100–320 K. The data obtained were used to determine the thermal expansion coefficients along the main crystallographic axes. The temperature curves of the unit-cell parameters and thermal expansion coefficients showed pronounced anomalies in the vicinity of the temperatures T 1 = 120, T 2 = 150, and T 3 = 180 K corresponding to the phase transitions in the [(CH3)2NH2]5Cd3Cl11 crystals. The crystals are also characterized by a pronounced anisotropy of thermal expansion.  相似文献   

7.
Abstract

I. The unit cell parameters of deuterated pTS have been measured by neutron diffraction from 200 to 300 K and as a function of polymer content X from ?0 to >95%, and the evolution with X of the thermal expansion tensor α has been calculated. The data yield information on the side groups displacement depending on X, and on the anisotropy of matrix response to chain creation.

αb does not decrease smoothly with X, and shows a secondary maximum just at the beginning of the autocatalytic range.

The expansion in the (a,c) plane is maximum around X = 30% and the corresponding principal axes rotate by about 20° to become aligned with the perpendicular to the molecule long axis.  相似文献   

8.
CuIn3Se5 and CuGa3Se5 uniform single crystals 12 mm in diameter and 40 mm in length with the chalcopyrite‐related structure were prepared by directed crystallization of the melt. The melting points of these compounds were defined by means of the differential thermal analysis (DTA). The lattice parameters a and c as well as the axial thermal expansion coefficients αa and αc were determined as a function of temperature in the range from 90 to 650 K by the X‐ray diffraction method (XRD). It is found that for both the compounds the coefficients of expansion along the a ‐axis are larger than those along the c ‐axis over the entire temperature range studied.  相似文献   

9.
Bulk BPO4 crystals have been successfully grown from high temperature solution of BPO4, Li2O, and MoO3 in the molar ratio of 2.3:1:1.3 by the top‐seeded solution growth (TSSG) method using [101]c orientation seeds. There are no visible scattering centers and impurity of Mo in the as‐grown BPO4 crystals, whose optical homogeneity reaches up to 1.6×10–5/cm. BPO4 possesses a specific heat of 0.50–1.00 J·g–1·K–1 in the temperature range from 298 to 698 K and exhibits strong anisotropic thermal expansion behavior with αa = 14.2 × 10–6 K–1 and αc = ‐4.0 × 10–7 K–1. Moreover, the thermal conductivity coefficients are calculated to be κa = 62.4 W·m–1·K–1 and κc = 51.5 W·m–1·K–1, which are remarkably larger than those of some commonly used borates. The measured dielectric constants, εa and εc, are 4.8 and 6.1, respectively, and the ionic conductivity coefficients, σa = 4.3 × 10–8 S/cm and σc = 9.5 × 10–8 S/cm, are several orders of magnitude lower than that of LiB3O5 (LBO). (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The unit-cell parameters a, b, and c of KTiOPO4 crystals have been measured by the X-ray diffraction method in the temperature range 80–320 K. The parameters obtained were used to determine the thermal expansion coefficients α[100], α[010], and α[001] along the principal crystallographic axes. It was established that thermal expansion in the crystals is essentially anisotropic and that α[010] > α [100], whereas α[001] is close to zero.  相似文献   

11.
A Nd‐doped lutetium orthovanadate Nd:LuVO4 crystal has been grown using a modified Czochralski method. The thermal properties of this crystal have been studied by measuring the thermal expansion, specific heat and thermal diffusivity. The thermal expansion coefficients are α11 = 1.7 × 10‐6, α22 = 1.5 × 10‐6 and α33 = 9.1 × 10‐6/K in the temperature range of 298–573 K along the three respective crystallographic axes. The specific heat is almost linear and increases from 0.442 to 0.498 Jg‐1K‐1 in the measured temperature range. The thermal diffusivity is anisotropic and decreases with increasing temperature from 295 to 548 K. At room temperature the calculated thermal conductivities κ11 and κ33 are 7.96 and 9.77 Wm‐1K‐1, respectively. These thermal parameters of Nd:LuVO4 crystal have indicated that it is an excellent candidate laser material. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A precise determination of the lattice parameters and the coefficients of thermal expansion of mercurous chloride has been made at different temperatures ranging from 30 °C to 260 °C with a Unicam 19 cm high-temperature powder camera and FeKα radiation. The ‘a’ parameter increases non-linearly, whereas the ‘c’ parameter decreases linearly with temperature. Both the c/a value and the unit-cell volume are found to decrease with increasing temperature. The coefficient of thermal expansion along the ‘c’ axis, α∥, is found to have a constant negative value throughout the range of temperature studied. The positive value of α⊥ increases while the negative value of volume coefficient (β) decreases linearly with increasing temperature indicating an unusual and interesting thermal behaviour.  相似文献   

13.
Single crystals of orthorhombic Zn3(PO4)3 · 4 H2O of optical quality with dimensions up to 12 × 10 × 8 mm were grown from aqueous solutions of ZnSO4 and NaH2PO4 by controlled diffusion of NH3 into the solution. The elastic constants cij and the thermoelastic constants Tij = dcij/dT, T temperature, were determined from ultrasonic resonance frequencies of thick plates in the range between 5 and 40 MHz and between 250 and 320 K. In respect to the longitudinal elastic stiffness hopeite behaves quasi isotropically, however, the elastic shear stiffness shows a large anisotropy of about a factor 2.5. Above 260 K the shear stiffness c66 possesses a quite anomalous temperature dependence (T66 > 0). Further, the linear thermal expansion reveals a strong anisotropy (α11 = −3.3, α22 = 3.4, α33 = 33 · 10−6/K).  相似文献   

14.
The lattice parameters a and c as well as the axial thermal expansion coefficients α ⟂ and α ∥ in the CuAlTe2 chalcopyrite-type compound are determined as a function of temperature in the range from 80 to 650 K by a X-ray diffractometry technique. The data obtained are used to evaluate the axial ratio c/a, the tetragonal distortion δ = 2 — c/a, the interatomic distances for Cu Te and Al Te bonds and their temperature coefficients. It is found that the thermal expansion behaviour of CuAlTe2 is similar to that of other CuBIIICVI2 compounds in having a relatively small expansivity along the c-axis and a large one in the perpendicular direction. When comparing the results for a series of the CuBIIICVI2 compounds (B Al, Ga, In; C S, Se, Te) it is shown that the correlations between the thermal expansion coefficients α ⟂, α ∥, αm, dδ/dT and the tetragonal distortion δ, as well as the molar mass of the compound take place.  相似文献   

15.
Empirical relations are derived for the average linear thermal expansion coefficient αL and the linear thermal expansion coefficients αa and αc of the lattice parameters a and c, respectively, of the AIBIIIC2IV and AIIBIVC2V compounds. It is shown that the thermal expansion coefficients of all tetrahedrally coordinated compounds can be described within the same model. The anisotropy of the thermal expansion coefficients depends essentially on the lattice constant ratio c/a. There exists a critical c/a value below of which αc becomes negative.  相似文献   

16.
Single crystals of bis-dimethylglyoximate Co(III) up to 8 × 6 × 2 mm. in size have been grown by the first time, using diffusion method at room temperature. Optimum size and quality were obtained at pH = 6. These crystals are orange in colour and an X-ray study shows it to be monoclinic, space group P 21/n, with a = 8.432(4), b = 14.147(3), c = 13.746 (6) and β = 103.78(3)°. The effects of different experimental devices on the growth features are discussed.  相似文献   

17.
Double magnesium zirconium orthophosphate Mg0.5Zr2(PO4)3 is synthesized by the sol-gel method. The compound prepared is characterized using electron probe microanalysis and X-ray diffraction. The crystal structure of the orthophosphate is refined by the Rietveld method in space group P21/n (Z = 4) at temperatures of 298 K [a = 12.4218(2) Å, b = 8.9025(2) Å, c = 8.8218(2) Å, β = 90.466(1)°] and 1023 K [a = 12.4273(5) Å, b = 8.9453(4) Å, c = 8.8405(4) Å, β = 90.320(3)°]. It is demonstrated that an increase in the temperature leads to an anisotropic expansion of the unit cell of the phosphate structure, but the structural type remains unchanged.  相似文献   

18.
Zirconium phosphate Zr3(PO4)4 has been synthesized by the sol-gel technique and investigated using X-ray powder diffraction, IR spectroscopy, and differential scanning calorimetry. It has been established that the symmetry of the unit cell, R \(\bar 3\) c, which is characteristic of the NaZr2(PO4)3 (NZP) family, is lowered to P \(\bar 3\) c. The behavior of the zirconium phosphate during heating has been examined using high-temperature X-ray diffraction at temperatures ranging from 25 to 575°C. It has been revealed that the structure of the zirconium phosphate is hardly subjected to expansion due to heating in the temperature ranges 25–125°C (α a < 1 × 10?6 K?1, α c < 1 × 10?6 K?1, Δα < 1 × 10?6 K?1) and 325–575°C (α a = ?1.4 × 10?6 K?1, α c < 1 × 10?6 K?1, Δα < ?2.4 × 10?6 K?1). In the temperature range 125–325°C, the synthesized compound undergoes a second-order phase transition (upon heating), which is accompanied by the contraction of the structure along all crystallographic directions. Upon cooling in the range from 75 to 25°C, the phase transition is accompanied by the expansion of the structure.  相似文献   

19.
The growth morphology of MMTG (manganese mercury thiocyanate glycol monomethyl ether, MnHg(SCN)4(C3H8O2)) crystal was indexed according to the X‐ray powder diffraction spectroscopy. The density and Mohs hardness were determined at room temperature. The specific heat of the crystal is 458.6 J.mol‐1K‐1 at 300 K. The thermal expansion coefficient (TEC) along the a, b and c axis is a1=6.89 × 10‐5 K‐1, a2=6.78 × 10‐5 K‐1 and a3=2.08 × 10‐5 K‐1, respectively. The sameness and difference of the TECs are interpreted on the basis of crystal structure. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We report an original solventless thermal crystallisation method to grow large needle‐like salicylic acid (SA) crystals of 10‐12 mm in length. The method is based on the utilization of nitrogen gaz flow on salicylic acid powder during heating just below melting point temperature for 24 h. Salicylic acid provides one of the best examples of a pharmaceutical substance used for cosmetics whose physical and chemical properties indicate hydrogen‐bond formation between the hydroxyl group and an adjacent oxygen atom of the same molecule. The structure of the crystals is confirmed by single crystal X‐ray diffraction; it is monoclinic, a = 4.93(2) Å, b = 11.23(5) Å, c = 11.56(6) Å, β = 90.77(4)° with the space group P 21/c. The macrocrystals formation using this method is new and represents an interesting finding for a wide range of applications to be developed in the fields of biotechnology and photonics (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号