首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The optical properties of the poly(N-benzylaniline) thin film were investigated by optical characterization. The optical constants such as refractive index and dielectric constant were determined from the transmittance and reflectance spectra of the film. The refractive index dispersion was analyzed by the Wemple-DiDomenico model. The n(infinity) values changed from 6.37 to 5.71 and these values did not show any certain trend with annealing temperatures. The average oscillator parameter So value, which is the strength of the individual dipole oscillator, was found to be in the range of 1.15 x 10(13) to 1.03 x 10(13) m(-2). The optical band was determined from the direct optical transitions in K space. The optical band Eg of the film decreases from 2.089 to 2.046 eV with increasing annealing temperatures while the Urbach energy Eu called the width of localized states in the optical band gap increases from 0.544 to 0.598 eV. Consequently, the optical constants and optical band gap of the poly(N-benzylaniline) change with the annealing temperatures.  相似文献   

2.
Undoped and manganese doped ZnO (ZnO:Mn) films were prepared by sol gel method using spin coating technique. The effect of Mn incorporation on the structural and optical properties of the ZnO film has been investigated. The crystalline structure and orientation of the films have been investigated by using their X-ray diffraction spectra. The films exhibit a polycrystalline structure. Mn incorporation led to substantial changes in the structural characteristics of the ZnO film. The scanning electron microscopy (SEM) images of the films showed that the surface morphology of the ZnO film was affected by the Mn incorporation. The transparency of the ZnO film decreased with the Mn incorporation. The optical band gap and Urbach energy values of the ZnO and ZnO:Mn films were found to be 3.22, 3.19 eV and 0.10, 0.23 eV, respectively. The optical constants of these films, such as refractive index, extinction coefficient and optical dielectric constants were determined using transmittance and reflectance spectra. The refractive index dispersion curve of the films obeys the single oscillator model with dispersion parameters. The oscillator energy, E o , and dispersion energy, E d, of the films were determined 5.30 and 16.26 eV for ZnO film and 5.80 and 12.14 eV for ZnO:Mn film, respectively.  相似文献   

3.
Sol–gel spin-coating was used to grow zinc oxide (ZnO) thin films doped with 0–2.5 at.% B on quartz substrates. The structural, optical, and electrical properties of the thin films were investigated using field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), ultraviolet–visible spectroscopy, and van der Pauw Hall-effect measurements. All the thin films had deposited well onto the quartz substrates and exhibited granular morphology. The average crystallite size, lattice constants, residual stress, and lengths of the bonds in the crystal lattice of the thin films were calculated from the XRD data. The PL spectra showed near-band-edge (NBE) and deep-level emissions, and B doping varied the PL properties and increased the efficiency of the NBE emission. The optical transmittance spectra for the undoped ZnO and boron-doped zinc oxide (BZO) thin films show that the optical transmittance of the BZO thin films was significantly higher than that of the undoped ZnO thin films in the visible region of the spectra and that the absorption edge of the BZO thin films was blue-shifted. In addition, doping the ZnO thin films with B significantly varied the absorption coefficient, optical band gap, Urbach energy, refractive index, extinction coefficient, single-oscillator energy, dispersion energy, average oscillator strength, average oscillator wavelength, dielectric constant, and optical conductivity of the BZO thin films. The Hall-effect data suggested that B doping also improved the electrical properties such as the carrier concentration, mobility, and resistivity of the thin films.  相似文献   

4.
The optical properties of sulfonated polyaniline (SPAN) thin film prepared by electrochemical method have been investigated. Polychromic behavior of SPAN thin film (transparent yellow-green-dark blue) was observed when the cyclic voltammograms were taken between -0.25 V and +1.90 V (vs. Ag/AgCl, sat.) during the growth of polyaniline film. In situ UV-vis spectra of the polymers-indium tin oxide (ITO) glass electrode were taken during the oxidation of the polymers at different applied potentials. The direct band gap values of SPAN thin film changed from 3.771 eV to 3.874 eV with the applied potentials. From in situ UV-vis spectra, the optical constants such as refractive index and dielectric constant of the SPAN thin film were determined. The important changes in absorption edge, refractive index and the dielectric constant were observed due to the applied potentials. The refractive index dispersion curves of the film obey the single-oscillator model and oscillator parameters changed with the applied potentials. The most significant result of the present work is in situ spectroelectrochemical method, which can be used to modify the optical band gaps and constants.  相似文献   

5.
The optical properties and optical constants of the polyindole and poly(5-carboxilic acid indole) conductive polymers synthesized and doped electrochemically with ClO 4 ? in acetonitrile solution were investigated by means of transmittance and reflectance spectra, in the wavelength range of 300–800 nm. Absorption band centered at 425 nm assigned to the direct allowed electron transition (π → π*) from valence band to the conduction band. The optical band gap, E g , was determined out of the optical absorption spectra. The E g increases from 2.17 eV for polyindole film to 2.40 eV for poly(5-carboxilic acid indole) polymer thin film, which is attributed to the effect of electron withdrawing carboxylic acid functional group on the growth of chain length of the polymer during the electropolymerization. The oscillator energy E 0, dispersion energy E d and other parameters were determined by the Wemple-DiDomenico method.  相似文献   

6.
In the present work, 4-(4′-dodecyloxycarbonyl) phenoxy phthalonitrile was synthesized and then this phthalonitrile derivative was cyclotetramerized in dodecanol resulting a new metal-free phthalocyanine. The optical properties of this phthalocyanine were investigated. Novel metal-free phthalocyanine thin films were deposited on indium tin oxide-coated glass substrates by spinning method. Surface and microstructural properties of the films were characterized by atomic force microscopy and scanning electron microscopy. Both the transmittance and reflectance spectra of the deposited films were recorded using an NKD analyser. The optical band gap energy, the thickness of thin films, refractive index (n) and extinction coefficient (k) were calculated as 2.7 eV, 300 nm, 1.47 and 0.02, respectively.  相似文献   

7.
Boron doped NiO films were prepared by sol–gel method. The effects of B content on the morphological and optical properties of NiO films were studied with atomic force microscopy, and optical characterization method. The average transmittance at the visible region is reached to 75 % for lower doped films (0.1 and 0.2 % B), whereas, the recorded average value of transmittance was about 62 % for doped film with 1 % B throughout the region. The optical energy gap value for pure NiO film was found to be 3.73 eV. These values were affected by B doping with non-monotonic variation and reached to 3.64 eV for 0.1 % B doped NiO. Also, the refractive index dispersion and dielectric constants of the NiO films were studied throughout the investigated range of wavelengths. The obtained results indicate that the optical parameters of the NiO film are controlled with boron doping.  相似文献   

8.
The article reports the structural and optical properties of vacuum‐evaporated cadmium sulfide (CdS) films with different thicknesses at room temperature. The structural investigations performed by means of X‐ray diffraction (XRD) technique have showed that all the films have the zinc‐blende structure, a face‐centered cubic form with lattice constants a = b = c = 5.82 Å and point group F4 3m. Crystallite sizes calculated from Scherrer relation are in the range of 173–345 Å. So far, because the optical parameters of the metastable cubic CdS have not been so well known, we apply spectroscopic ellipsometry to determine the thickness, optical constants and energy band gap of CdS thin film deposited by thermal evaporation onto opaque gold substrate, a perfect reflectivity and inert metal. As shown the measured spectral behavior of the optical constants and the band gap value of CdS thin film are in agreement with those obtained by the reflectance and transmittance methods. The energy band gap of CdS thin film determined from the spectral behavior of the absorption coefficient is about 2.46 eV. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The Zn0.9Mg0.1O thin films were prepared on Si (100) substrates by the sol‐gel method. The structural and the optical properties of Zn0.9Mg0.1O thin films, submitted to an annealing treatment in the 400–700 °C ranges, are studied by X‐ray diffraction (XRD) and ultraviolet (UV)‐visible spectroscopic ellipsometry (SE). The thickness, refractive index, and extinction coefficient of these films have been determined by analyzing the SE spectra using parameterized dispersion model. Moreover, we made a detailed comparison among various dispersion models and found that the Sellmeier model was superior to others in fitting the ellipsometric spectra in the transparent region. In the interband transition region, point‐by‐point fit was used. The spectral dependence of the refractive index and extinction coefficient was obtained in the photon energy range of 1.5–4.71 eV. The influence of annealing temperature on the refractive index, the extinction coefficient, and the optical bandgap energy was also discussed. We found that the refractive index and the extinction coefficient increase with increasing the annealing temperature, meaning the optical quality of Zn0.9Mg0.1O films is improved by annealing. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Pure and antimony (Sb) doped CdO films were grown using sol–gel spin coating technique. The structural properties of the films were investigated using atomic force microscopy. The structure of CdO film is converted from microrods to nanorods with Sb dopant. The analysis of optical absorption revealed that optical bandgap of the films changes with doping. The optical bandgap for 0.1, 0.5, 1.0, and 2.0% Sb doped CdO was determined to be 2.28, 2.30, 2.56, and 2.42 eV, respectively. Other optical constants such as refractive index, extinction coefficient, and dielectric constants were calculated using the optical data. The refractive index dispersion of the films obeys the single oscillator model. The volume and surface energy loss functions were calculated and observed to increase with increase in the photon energy.  相似文献   

11.
In this paper, we reports on the structural and optical properties of Zn1?x?yBexMgyO thin films prepared by sol–gel method, which are new materials for optoelectronic and ultraviolet-light-emitting devices. The crystal structure and core level spectra of these films are studied by X-ray diffraction and X-ray photoelectron spectroscopy. Surface morphology of the films is analyzed by scanning electron microscope images and the surface is composed of spherical shaped grains. Micro-photoluminescence shows a near edge band emission and the peak values tuned from 3.26 eV for the undoped to 3.4 eV for the doped ZnO film. Near infrared emission is observed in the region 1.64–1.67 eV for pure and co-doped ZnO films. In micro-Raman spectra, multiple-order Raman bands originating from ZnO-like longitudinal optical (LO) phonons are observed. A Raman shift of about 5–18 cm?1 is observed for the first-order LO phonon. A comparative study was made on Raman band for BeZnO, MgZnO and BeMgZnO nanocrystals with the LO phonon band of bulk ZnO. The ultraviolet resonant Raman excitation at room temperature shows multi-phonon LO modes up to the fourth order. Deformation energy of all the films is calculated and BeMgZnO film has the minimum deformation energy.  相似文献   

12.
Effect of In, Al and Sn dopants on the optical and structural properties of ZnO thin films have been investigated by X-ray diffraction technique and optical characterization method. X-ray diffraction patterns confirm that the films have polycrystalline nature. The thin films have (002) as the preferred orientation. This (002) preferred orientation is due to the minimal surface energy which the hexagonal structure, c-plane to the ZnO crystallites, corresponds to the densest packed plane. The grain size values of the films are found to be 29.0, 35.2 and 39.5 nm for In, Al and Sn doped ZnO thin films, respectively. The optical band gaps of the films were calculated. The absorption edge shifts to the lower wavelengths with In, Al and Sn dopants. The inclusion of dopant into films expands also width of localized states as E(UIn)>E(UAl)>E(USn). The refractive index dispersion curves obey the single oscillator model. The dispersion parameters and optical constants of the films were determined. These parameters changed with In, Al and Sn dopants.  相似文献   

13.
概要介绍椭圆偏振光谱 (SE)的原理与特点 ,并用椭偏光谱测定了一组结晶度不同的无取向PET薄膜的光学常数谱 ,研究半结晶性高聚物PET不同结晶形态对其光学性能的影响 ,发现随结晶度的增加 ,其光学常数显著增大 ,并趋于晶态的光学常数 .光学性质的改变可能与微晶的尺寸有关  相似文献   

14.
Optical properties of the interaction between thiophanate methyl and human serum albumin have been investigated for biosensor applications. The interaction between human serum albumin (HSA) and thiophanate methyl (MT) was investigated by UV-Vis absorption spectra and atomic force microscopy. The optical constants (refractive index, absorption index, band gap and dielectric properties) of HSA, MT and MT+HSA films were determined using absorbance, transmittance and reflectance spectra. The refractive index dispersion curve (>530 nm) exhibits the normal dispersion. The refractive index of the MT+HSA is higher than both HSA and MT alone due to the highest reflectance of the mixture of MT and HSA. This behavior is indicative of the complex formation between the MT and HSA.  相似文献   

15.
Poly (vinyl acetate) (PVAc) loaded bismuth oxide (Bi2O3) nanorods were successfully prepared at ambient pressure. X‐ray diffraction (XRD) and transmission electron microscopy were used to characterize the final product. It was found that Bi2O3 nanorods were formed and the diameter of the rods was confined to about 8 nm. The diameter and length of formed rods were found to increase by increasing the bismuth oxide concentration in the PVAc matrix. The optical properties of the nanocomposite films were characterized from the analysis of the experimentally recorded transmittance and reflectance data in the spectral wavelength range of 300–800 nm. The values of some important parameters of the studied films are determined such as refractive index (n), extinction coefficient (k), optical absorption coefficient (α), and band energy gap (Eg). According to the analysis of dispersion curves, it has been found that the dispersion data obeyed the single oscillator of the Wemple–DiDomenico model, from which the dispersion parameters and high‐frequency dielectric constant were determined. In such work, from the transmission spectra, the dielectric constant (ε) and the third‐order optical nonlinear susceptibility χ(3) were determined. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Calcium modified lead titanate sol was synthesized using a soft solution processing, the so-called polymeric precursor method. In soft chemistry method, soluble precursors such as lead acetate trihydrate, calcium carbonate and titanium isopropoxide, as starting materials, were mixed in aqueous solution. Pb0.7Ca0.3TiO3 thin films were deposited on platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure, dielectric and optical properties of the thin films were investigated. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 299 and 0.065, respectively, for a thin film with 230 nm thickness annealed at 600°C for 2 h. The remanent polarization (2Pr) and coercive field (E c) were 32 C/cm2 and 100 kV/cm, respectively. Transmission spectra were recorded and from them, refractive index, extinction coefficient, and band gap energy were calculated. Thin films exhibited good optical transmissivity, and had optical direct transitions. The present study confirms the validity of the DiDomenico model for the interband transition, with a single electronic oscillator at 6.858 eV. The optical dispersion behavior of PCT thin film was found to fit well the Sellmeir dispersion equation. The band gap energy of the thin film, annealed at 600°C, was 3.56 eV. The results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of PCT thin films.  相似文献   

17.
The influence of X-ray irradiation in air of iron (III) chloride tetraphenylphorphyrin (FeTPPCl) thin films was carried out in order to investigate changes in optical properties. The changes of refractive index, n, and extinction coefficient, k, were calculated using spectrophotometric measurements of transmittance and reflectance at normal incidence over the spectral range 200–2500 nm. The obtained data of n and k were used to estimate the type of transitions and the optical and fundamental gaps before and after X-ray irradiation. In addition, the normal dispersion of the refractive index is discussed in terms the single oscillator model and Drude model of free carrier absorption.  相似文献   

18.
Nanocrystalline cupric oxide thin films were prepared using the sol-gel method. Three sols with different pH were performed in order to evaluate the pH effect on the morphology and optical properties of the films. XRD pattern confirmed the nanocrystalline monoclinic CuO phase formation. The influences of pH on surface morphology of films were investigated by scanning electron microscopy (SEM). It was observed that grains size increases by increasing the pH of the sol. UV-Vis spectrum measurement showed low transparency of the films in the visible region. Optical constants such as extinction coefficient, refractive index and optical band gap were evaluated from these spectra by using the Pointwise Unconstrained Minimization Approach (PUMA). The band gap of the films varies from 2.20 to 1.98 eV for various pH of sol.  相似文献   

19.
掺硼p型非晶硅薄膜的制备及光学性能的表征   总被引:1,自引:0,他引:1  
以高氢稀释的硅烷(SiH4 )为反应气体,硼烷(B2H6)为掺杂气体,利用RF-PECVD方法,在玻璃衬底上制备出掺硼的氢化非晶硅(a-Si:H)薄膜,研究了硼掺杂量对氢化非晶硅(a-Si:H)薄膜的光学性能的影响.利用NKD-7000 W光学薄膜分析系统测试薄膜的透射谱和反射谱,并利用该系统的软件拟合得出薄膜的折射率、消光系数、吸收系数等光学性能参数,利用Tauc法计算掺硼的非晶硅薄膜的光学带隙.实验结果表明,随着硼掺杂量的增加,掺杂非晶硅薄膜样品在同一波长处的折射率先增大后减小,而且每一样品均随着入射光波长的增加而减小,在波长500 nm处的折射率均达到4.3以上;薄膜的消光系数和吸收系数随着硼掺杂量的增大而增大,在500 nm处的吸收系数可高达1.5×105cm-1.在实验的硼掺杂范围内,光学带隙从1.81 eV变化到1.71 eV.  相似文献   

20.
Titanium dioxide thin films have been synthesized by sol–gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 °C. The influence of surfactant and annealing temperature on optical properties of TiO2 thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO2 films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO2 films was estimated by Tauc's method at different annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号