首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnO nanorods (NRs) and nanotubes (NTs) have been synthesized by a hydrothermal method on Si substrates that had been precoated (by pulsed laser deposition (PLD)) with a thin ZnO film. High-resolution transmission electron microscopy and selected area electron diffraction analysis confirm that the NTs are ZnO single crystals and that their growth direction is along [0001] (the c-axis). Scanning electron microscopy points to the early-time formation of two classes of NRs on the PLD ZnO coating, one of which is longer and displays higher length/diameter aspect ratios than the other. The morphologies of NRs belonging to the first of these classes were seen to evolve with time, progressively tapering, and producing volcano-like surface structures that develop into NTs. In contrast, NRs belonging to the other (shorter) class retain their hexagonal cross-section and have flat tops. To explain these emergent structures and, in particular, the selective growth of ZnO NTs, we have undertaken a systematic investigation of the effects of different substrates (e.g., borosilicate glass, Pt-coated glass, and both bare and PLD ZnO-coated Si wafers) and of the reactive solution on the growth properties of ZnO NRs, NTs, and the ZnO nanopowders that precipitate from the reactive mixture. The experimental findings suggest the following ZnO NT growth mechanism. The PLD ZnO film consists of many nanocrystallites, with a preferred c-axis alignment. These serve to nucleate the hydrothermal growth of (c-axis aligned) NRs. The NRs are deduced to be Zn-polar, but can be either Zn-atom or O-atom terminated. It is proposed that the different surface terminations influence (by electrostatic interactions) the cation (Zn(2+) and ZnOH(+)) to anion (OH(-)) concentration ratio in the double layer at the growing polar surface. Zn-atom termination causes a reduction in the local Zn(2+)/OH(-) (and ZnOH(+)/OH(-)) ratios (i.e., the extent of solution supersaturation) relative to those in the bulk solution, thereby encouraging tapered NR growth and, as the zinc concentration falls further, the emergence of volcano-like structures on the polar surface, which seed the subsequent growth of ZnO NTs.  相似文献   

2.
Herein we report the fabrication of ZnO nanowires on anisotropic wet etched silicon substrates by selective hydrothermal growth. <100> oriented silicon wafers were first patterned by anisotropic wet etch with a KOH solution, resulting in V-shaped stripes of different periods. Then, a thin layer of gold was deposited and annealed to promote the hydrothermal growth of ZnO nanowires. It was found that the growth rate of ZnO nanowires on <111> surfaces was much higher than that on <100> surfaces. As a first application of such micro- and nanostructured surfaces, we show enhanced wetting properties by measuring the contact angle of water droplets on the samples obtained under different patterning and growth conditions. Our results also demonstrated the possibility of tuning the contact angle of the sample in the range between 115° and 155°, by changing either the pattern of the silicon template or the hydrothermal growth conditions.  相似文献   

3.
Polycrystalline La0.7Sr0.3MnO3 manganite thin films were grown on silicon substrates covered by SiOx amorphous native oxide. Unusual splitting of the manganite layer was found: on the top of an intermediate layer characterised by lower crystalline order, a magnetic robust layer is formed. Curie temperatures of about 325 K were achieved for 70 nm thick films. A strong room temperature XMCD signal was detected indicating high spin polarisation near the surface.  相似文献   

4.
5.
Zinc oxide nano-wires (ZnO NWs) are synthesized reproducibly with high yield via a low temperature hydrothermal technique. The influence of the growth duration time, growth temperature, zinc precursor and base concentration of Na2CO3 on the morphology of NWs is investigated. The growth products are characterised using scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). SEM analysis shows that the optimum growth temperature is 140 °C and finds that length and diameter of ZnO NWs have a relationship with growth duration time and base concentrations of Na2CO3. In addition, it is reported that a high (~90%) yield of ZnO NWs can be synthesised via using any of three different precursors: zinc chloride, zinc acetate and zinc nitrate. TEM and XRD results indicate the high purity and the single crystalline nature of the ZnO NWs. XPS confirms the absence of sodium contaminants on the surface and indicates a near flat band surface condition. PL shows a large visible band in the yellow part of the spectrum, and a small exciton emission peak, indicating a large defect concentration, which is reduced after annealing in air.  相似文献   

6.
To improve the electrochemical performances of Si thin film anodes for lithium rechargeable batteries, fullerene thin films are prepared by plasma-assisted evaporation methods to be used as coating materials. Analyses via Raman and X-ray photoelectron spectroscopy indicate that amorphous polymeric films originated from fullerene are formed on the surface of the silicon thin film. The electrochemical performance of these fullerene-coated silicon thin film as an anode material for rechargeable lithium batteries has been investigated by cyclic voltammetry, charge/discharge tests, and electrochemical impedance spectroscopy. The fullerene-coated Si thin films demonstrated a high specific capacity of above 3,000 mAh g−1 as well as good capacity retention for 40 cycles. In comparison with bare silicon anodes, the fullerene-coated silicon thin film showed superior and stable cycle performance which can be attributed to the fullerene coating layer which enhances the Li-ion kinetic property at the electrode/electrolyte interface.  相似文献   

7.
《Materials Chemistry》1980,5(1):19-28
The structure of aluminium films deposited by chemical vapour deposition (CVD) method from aluminium triethyl on amorphous quartz and monocrystalline silicon substrates has been studied. X-ray data processing shows that the broadening of the diffraction maxima is due both to the reduced dimensions of the crystallites and microtensions appearing in the thin films. The deposition temperature influences the surface of the thin film and the value of lattice parameter. A simple model is proposed to explain cracking of Al thin films. Aluminium thin films deposited by CVD method show a smoother surface than Al films obtained by vacuum evaporation as revealed by X-ray diffraction topography patterns.  相似文献   

8.
9.
In the present study, we report the chemical vapor deposition (CVD) of nitrogen-doped (N-doped) aligned carbon nanotubes on a silicon (Si) substrate using ferrocene (Fe(C5H5)2) as catalyst and acetonitrile (CH3CN) as the carbon source. The effect of experimental conditions such as temperature, gaseous environment, and substrates on the structure and morphology of N-doped carbon nanotubes arrays is reported. From XPS and EELS data, it was found that the nitrogen content of the nanotubes could be determined over a wide range, from 1.9% to 12%, by adding the addition of hydrogen (H2) to the reaction system. It was also shown by SEM that N-doped carbon nanotube arrays could be produced on Si and SiO2 substrates at suitable temperatures, although at different growth rates. Using these concentrations, it was possible to produce three-dimensional (3D) carbon nanotubes architectures on predetermined Si/SiO2 patterns. The mechanism underlying the effect of nitrogen containing carbon sources on nanotube formation was explored using X-ray photoelectron spectroscopy (XPS).  相似文献   

10.
Journal of Sol-Gel Science and Technology - Considering the full utilization of energy and pursuing thin-film capacitors with high energy-storage density, the grain size engineering is used to...  相似文献   

11.

Nickel-metal hydride (Ni-MH) batteries were widely used due to their various advantages, but its further application and development have been seriously hindered by the low electrochemical discharge capacity of conventional hydrogen storage alloy electrode. The hydrogenated amorphous silicon (a-Si:H) thin film electrode for Ni-MH battery has been proven to have a dramatic electrochemical capacity. We prepared a-Si:H thin films by a two-step process of rf-sputtering followed by hydrogenation, and investigated the effect of hydrogenation on the structure and electrochemical properties of which as an anode. The maximum discharge capacity of a-Si:H thin film electrode after hydrogenation increases from initial 180 mAh·g−1to 1827 mAh·g−1, which is over tenfold that of as-deposited hydrogen-less a-Si thin film electrode. Then, the preliminary relationships between hydrogen content and electrochemical performance of a-Si:H thin film electrode were analyzed, and several negative factors of electrochemical performance for a-Si:H thin film electrode were proposed.

  相似文献   

12.
Urchin-like ZnO structures assembled with nanorods have been synthesized by cetyltrimethylammonium bromide-assisted hydrothermal method. The as-obtained products were characterized by powder X-ray diffraction, field-emission scanning electron microscopy for the study of crystal structure and morphology. The ZnO urchin is constructed of well-assembled nanorods of length ~3 μm range and diameter ~20 nm. Micro-Raman study shows characteristic Raman-active mode of hexagonal ZnO at 439 cm−1 and also mode related to defects at ~581 cm−1. The ZnO urchin assembled with nanorods possessed band edge emission at 3.085 eV and defect related visible emission at 2.97, 2.57, and 2.36 eV.  相似文献   

13.
A cyanurate prepolymer has been applied to smooth silicon wafers or to distinctly structured aluminium coatings. The surface composition of the substrates has been investigated by X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES) and ellipsometry. The application methods, spin coating and dip coating represent adsorption by a technical process exerting significant shear stresses or nearly equilibrated conditions, respectively. The mean tickness of the prepolymer film has been adjusted by variation of the concentration of the solution and checked by ellipsometry. Atomic Force Microscopy (AFM) monitored the development of the respective film morphologies of all 4 systems (silicon/aluminium, spin/dip coating) in the mean film thickness range from 1 to 50 nm.  相似文献   

14.
A cyanurate prepolymer has been applied to smooth silicon wafers or to distinctly structured aluminium coatings. The surface composition of the substrates has been investigated by X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES) and ellipsometry. The application methods, spin coating and dip coating represent adsorption by a technical process exerting significant shear stresses or nearly equilibrated conditions, respectively. The mean tickness of the prepolymer film has been adjusted by variation of the concentration of the solution and checked by ellipsometry. Atomic Force Microscopy (AFM) monitored the development of the respective film morphologies of all 4 systems (silicon/aluminium, spin/dip coating) in the mean film thickness range from 1 to 50 nm.  相似文献   

15.
A method for the fabrication of polymeric thin-film transistors (TFTs) by lamination is described. Poly(dimethylsiloxane) stamps were used to delaminate thin films of semiconducting polymers from silicon wafers coated with a self-assembled monolayer (SAM) formed from octyltrichlorosilane. These supported films were laminated onto electrode structures to form coplanar TFTs. The fabrication process was used to make TFTs with poly(3-hexylthiophene), P3HT, and poly[5,5'-bis(3-dodecyl-2-thienyl)-2,2'-bithiophene], PQT-12. TFTs, where these polymers were laminated onto gate dielectrics coated with SAMs from octyltrichlorosilane, had effective field-effect mobilities of 0.03 and 0.005 cm2/(V s), respectively. TFTs where PQT-12 was laminated onto gate dielectrics that were not coated with a SAM also had mobility of 0.03 cm2/(V s). In contrast, TFTs fabricated by spin-coating PQT-12 onto the same structure had mobilities ranging from 10-3 to 10-4 cm2/(V s). These results suggest that the lower mobilities of polymer TFTs made with hydrophilic gate dielectrics are caused by molecular ordering in the semiconducting film rather than electronic effects of dipolar groups at the interface.  相似文献   

16.
Zinc oxide thin films have been deposited on glass substrates by the chemical bath deposition method; a surfactant, cetyltrimethylammonium bromide (CTAB); was used as capping agent. The films were annealed at two different temperatures: 200 and 300 °C. The structural features were investigated by X-ray diffraction analysis which exhibited hexagonal wurtzite structures along with c-axis orientations. Crystallite size was estimated and found to be around 33–41 nm. The effect of post-deposition thermal annealing on the morphological and optical properties has been investigated by scanning electron microscopy and photoluminescence spectra at room temperature. The band gap energies of uncapped and CTAB-capped ZnO films were found to be 3.28 and 3.48 eV, respectively.  相似文献   

17.
The continuous decrease in size of electronic devices has reached a critical point at which the molecular-level understanding of chemical processes is imperative. Metal-containing films, an important part of every circuit, are currently deposited from a myriad of organometallic compounds, in order to control the first stages of film growth and ultimately produce an atomically defined interface. This article outlines recent molecular-level investigations on reactions of organometallic compounds with silicon surfaces. The role of surface structure and chemical state is placed in a framework of future challenges and opportunities for applications in electronics.  相似文献   

18.
In this paper the fabrication and electrical characterization of a silicon microreactor for high-temperature catalytic gas phase reactions, like Rh-catalyzed catalytic partial oxidation of methane into synthesis gas, is presented. The microreactor, realized with micromachining technologies, contains silicon nitride tubes that are suspended in a flow channel. These tubes contain metal thin films that heat the gas mixture in the channel and sense its temperature. The metal patterns are defined by using the channel geometry as a shadow mask. Furthermore, a new method to obtain Pt thin films with good adhesive properties, also at elevated temperatures, without adhesion metal is implemented in the fabrication process. Based on different experiments, it is concluded that the electrical behaviour at high temperatures of Pt thin films without adhesion layer is better than that of Pt/Ta films. Furthermore, it is found that the temperature coefficient of resistance (TCR) and the resistivity of the thin films are stable for up to tens of hours when the temperature-range during operation of the microreactor is below the so-called "burn-in" temperature. Experiments showed that the presented suspended-tube microreactors with heaters and temperature sensors of Pt thin films can be operated safely and in a stable way at temperatures up to 700 degrees C for over 20 h. This type of microreactor solves the electrical breakdown problem that was previously reported by us in flat-membrane microreactors that were operated at temperatures above 600 degrees C.  相似文献   

19.
Highly oriented ZnO nanorod arrays with controlled diameter and length, narrow size distribution and high orientation consistency have been successfully prepared on ITO substrates at different growth temperatures by using a simple hydrothermal method. XRD results indicate that the nanorods are high-quality single crystals growing along [001] direction with a high consistent orientation perpendicular to the substrate. SEM images show that the nanorods have average diameters of about 30-70 nm by changing growth temperature. The thin films consisting of ZnO nanorods with controlled orientation onto ITO substrates allow a more efficient transport and collection of photogenerated electrons through a designed path. For a sandwich-type cell, the relatively high overall solar energy conversion efficiency reaches about 2.4% when the growth temperature is at 95 °C.  相似文献   

20.
We report our new achievement on the direct generation of linear polyethylenimine@silica hybrid and silica thin films on various substrates, which is composed of 10 nm nanowire silica structure with tunable micro/nano hierarchical surface morphology. We found that a process for the rapid and controlled self-assembly of crystalline template layer of linear polyethylenimine on substrate surface is critical for the formation of ultrathin silica nanowire structure and micro/nano hierarchical morphology, since the template linear polyethylenimine layer directly promotes the hydrolytic condensation of alkoxysilanes. Templated silica mineralization on the self-assembled linear polyethylenimine layer was confirmed by the studies of X-ray photoelectron spectroscopy (XPS) and thin film X-ray diffraction (XRD). The surface of silica nanostructure and hierarchy could be well controlled by simply adjusting the conditions for LPEI assembly, such as the polymer concentrations and substrate surface property. After a simple fluorocarbon modification, the hierarchical silica nanowire thin film demonstrated robust and reliable super-repelling property toward a series of aqueous liquids (such as commercial inkjet (IJ) ink, soy source, milk). Comparative studies clearly confirmed the critical importance of surface hierarchy for enhancing super-repelling property. Moreover, we found that the forcibly formed dirty sports (both wet and dry) from the complexly composed liquids on the super-antiwetting surface could be easily and completely cleaned by simple water drop flow. We expect these tailored nanosurfaces would have the potentials for practical technological applications, such as liquid transferring, self-cleaning, microfluid, and biomedical-related devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号