首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methods are described for the determination of ultratrace amounts of copper and cadmium in seawater by graphite furnace atomic absorption spectrometry with flow-injection, microcolumn preconcentration. A new type of C18 column loaded with sodium diethyldithiocarbamate (sodium-DDC) was used to extract copper and cadmium from seawater as the DDC chelates. The analytical effects of the pH of the mixture of the sample and sodium-DDC solutions and the concentration of the chelating reagent were studied. Sodium-DDC-loaded columns and unloaded C18 columns with different shapes and volumes were compared. To determine copper in seawater, a simple aqueous calibration was made with a mixture of palladium and magnesium nitrate as a matrix modifier, while for cadmium no matrix modifier was necessary. This method required only small seawater volumes, 600 and 400 μl for the determination of copper and cadmium respectively, with preconcentration factors of 15-fold for copper and 10-fold for cadmium. Detection limits for the preconcentration of aqueous solutions of copper and cadmium were 0.024 and 0.004 μg liter−1 (3σ), respectively. Results for determinations of copper and cadmium in National Research Council of Canada, CASS-2, Nearshore Seawater Reference Material showed no significant differences between the certified values and the measured values, based on Student′s t test at the 95% confidence level. The relative standard deviations of the various measurements varied between 2 and 8%.  相似文献   

2.
A method is described for the determination of traces of gold in copper and cadmium by neutron activation analysis, using anion exchange resin as a preconcentration agent: gold was separated from large amount of copper or cadmium with Cl-form Dowex 1X8 AG, 100–200 mesh, resin. To reduce the interfering activities, the resin was irradiated in NO 3 -form and washed with dilute hydrochloric acid after irradiation.198Au in the resin was then counted with a Ge(Li) or NaI(Tl) detector. The chemical yields were more than 99%. The concentration factors of gold for copper and cadmium samples were 1.1×108 and 2.7×106, respectively. The analytical results of gold in 99.99% copper and 99.999% cadmium were 65 and 0.15 ppb, respectively. The blank was 0.05 ng Au per 200 mg of wet resin.  相似文献   

3.
A procedure was developed for the preconcentration and determination of aluminium and copper in dialysis concentrates at the ng cm–3 level. The preconcentration was achieved on microcolumns filled with Chelex-100 resin adjusted to a pH of 4.0. Five repetitive cycles of the sample through the column ensured a sufficient contact time for quantitative retention of aluminium and copper ions. The retained ions were eluted with HNO3 (0.5 mol dm–3). Aluminium and copper were determined in the eluate by Zeeman ETAAS using the standard addition technique. The procedure was performed under clean room conditions (class 10,000), The reliability of the results was evaluated by recovery tests, using dialysis concentrates spiked with aluminium and copper. The recoveries obtained ranged from 86 to 106% for aluminium and from 92 to 97% for copper. Using the recommended procedure, the LOD of aluminium and copper in dialysis concentrates (preconcentration factor 2) was found to be 0.5 ng cm–3 and 0.2 ng cm–3, respectively. Received: 19 December 1997 / Revised: 10 March 1998 / Accepted: 28 March 1998  相似文献   

4.
A procedure was developed for the preconcentration and determination of aluminium and copper in dialysis concentrates at the ng cm–3 level. The preconcentration was achieved on microcolumns filled with Chelex-100 resin adjusted to a pH of 4.0. Five repetitive cycles of the sample through the column ensured a sufficient contact time for quantitative retention of aluminium and copper ions. The retained ions were eluted with HNO3 (0.5 mol dm–3). Aluminium and copper were determined in the eluate by Zeeman ETAAS using the standard addition technique. The procedure was performed under clean room conditions (class 10,000), The reliability of the results was evaluated by recovery tests, using dialysis concentrates spiked with aluminium and copper. The recoveries obtained ranged from 86 to 106% for aluminium and from 92 to 97% for copper. Using the recommended procedure, the LOD of aluminium and copper in dialysis concentrates (preconcentration factor 2) was found to be 0.5 ng cm–3 and 0.2 ng cm–3, respectively. Received: 19 December 1997 / Revised: 10 March 1998 / Accepted: 28 March 1998  相似文献   

5.
A procedure for the determination of trace level of copper(II) and cadmium(II) by FAAS using an on-line preconcentration system has been proposed. In this system, copper and cadmium ions were adsorbed onto a minicolumn packed with silica gel modified with niobium(V) oxide (Nb2O5-SiO2), followed by nitric acid elution in reverse mode and determination on-line by flame atomic absorption spectrometry (AAS) without interference of the matrix. Chemical and flow variables as well as concomitant ions were studied in the developed procedure. The enrichment factor for copper(II) and cadmium(II) was 34.2 and 33.0, respectively, using a preconcentration time of 2 min. The limit of detection for copper(II) and cadmium(II) was 0.4, and 0.1 μg l−1, respectively. The precision of the method, evaluated as the relative standard deviation in solutions containing 15 μg l−1 of copper and 10 μg l−1 of cadmium, by analyzing a series of seven replicates, was 1.8 and 1.6%, respectively. The accuracy was assessed through recovery experiments of certified material and water samples.  相似文献   

6.
A simple flow injection on line separation and preconcentration system coupled to hydride generation atomic fluorescence spectrometry (HG-AFS) was developed for ultra-trace cadmium determination in seawater. With the sample pH kept at 3.0, the preconcentration of cadmium on the inner walls of the knotted reactor was carried out based on the retention of cadmium complex with 1-phenyl-3-methyl-4-benzoylpyrazol-5-one. A 0.2 mol L−1 HCl was introduced to elute the retained analyte complex and merge with KBH4 solution for HG-AFS detection. Under the optimal experimental conditions, an enhancement factor of 12 was obtained with a sample consumption of 12.0 mL. The limit of detection was 3.2 ng L−1 with a sample frequency of 24 h−1. The developed method was validated by the analysis of cadmium in certified reference materials, and was applied to the determination of cadmium in four seawater samples with R.S.D. of around 10%. Correspondence: Hong Wu, Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, P.R. China  相似文献   

7.
The sorption of azo compounds on anion exchangers of different basicity is studied; the physicochemical and analytical properties of the modified adsorbents are studied. For the prepared modified adsorbents, the conditions of the preconcentration and elution of copper, lead, and cadmium are determined. The analytical potency of the adsorbent Amberlite-Zincon for the group preconcentration and isolation of copper, lead, and cadmium from solutions of complex composition is demonstrated. An efficient combination procedure for the determination of copper, lead, and cadmium in geothermal waters are developed.  相似文献   

8.
An on-line solid phase extraction (SPE) preconcentration system coupled to flame atomic absorption spectrometer (FAAS) was developed for determination of copper and cadmium at μg L−1 level. The method is based on the on-line retention of copper and cadmium on a microcolumn of alumina modified with sodium dodecyl sulfate (SDS) and 1,10-phenanthroline and subsequent elution with ethanol and determination by FAAS. The effect of chemical and flow variables that could affect the performance of the system was investigated. The relative standard deviation (n = 6) at 20 μg L−1 level for copper and cadmium were 1.4 and 2.2% and the corresponding limits of detection (based on 3σ) were 0.04 and 0.14 μg L−1, respectively. The method was successfully applied to determination of copper and cadmium in human hair and water samples.  相似文献   

9.
A bulk liquid membrane system has been developed and applied to the simultaneous separation and preconcentration of up to seven heavy metals (copper, zinc, lead, cadmium, aluminium, manganese, and nickel) in seawater. Copper was selected to optimize transport conditions and then, under these conditions, the simultaneous extraction of other heavy metals was studied. The system achieved preconcentration yields ranging between 44.11% (Cd) and 77.77% (Cu) after nine hours of operation, the effectiveness of metal transport being Cu > Zn > Pb > Mn > Ni > Al > Cd. The system was applied to the preconcentration of four real seawater samples before their quantification by inductively coupled plasma–mass spectrometry (ICP–MS). Compared with the analytical procedures commonly used for trace metal determination in oceanography, the results obtained demonstrated that the new system may be used as a very clean (sample contamination-free), simple, and one-step alternative for semiquantitative, and even quantitative, simultaneous determination of heavy metals in seawater.  相似文献   

10.
A preconcentration method of gold, palladium and copper based on the sorption of Au (III), Pd (II) and Cu (II) ions on a column packed with 3-(2-aminoethylamino)propyl bonded silica gel is described. The modified silica gel was synthesized and characterized by FT-IR and C, H, N elemental analysis. At column preconcentration, the effects of parameters such as pH, volume, flow rate, matrix constituents of solutions and type of eluent on preconcentration of gold, palladium and copper were studied. The recoveries of Au (III), Pd (II) and Cu (II) were 98.93±0.51, 98.81±0.36 and 99.21±0.42 % at 95 % confidence level, respectively. The detection limits (δ) of the elements were 0.032, 0.016 and 0.012 μg ml−1, respectively. The preconcentration method was applied for determination of gold and palladium in certified reference material SARM 7B and copper in river and synthetic seawater by FAAS. Gold, palladium and copper were determined with relative error lower than 10 %.  相似文献   

11.
An approach to choosing analyte preconcentration conditions for the subsequent capillary electrophoresis (CE) analysis of the concentrate was substantiated using the simultaneous determination of zinc(II) and cadmium(II) trace concentrations as an example. A CE procedure was developed for the determination of Zn and Cd with the following characteristics: The time of the analysis, including analyte preconcentration from a 50-mL sample, was 30 min. The analytical ranges were 0.01–0.2 mg/L for cadmium(II) and 0.005–0.1 mg/L for zinc(II).  相似文献   

12.
A solid phase extraction method based on graphene oxide (GO) modified with magnesium oxide (MgO) nanoparticles was developed for the preconcentration and determination of trace amounts of cadmium, copper and nickel ions. The adsorbed analytes were eluted by 4.0 mL of 0.1 M (EDTA) and injected to flame atomic absorption spectrometer. The factors influencing the complex formation and extraction of these heavy metals were optimized. Studies on potential interference by various anions and cations showed the method to be highly selective. The preconcentration factor was about 11 with relative standard deviation of <4.0 for 8 replication determination. The detection limits for the Cd, Cu, Ni were found to be 0.5, 3.4 and 25 µg L?1, respectively. The method was successfully applied for the determination of cadmium, copper and nickel in tap water, well water, sea water, rice and macaroni samples with spike recoveries ranging 93–105 %.  相似文献   

13.
Lemos VA  Baliza PX 《Talanta》2005,67(3):564-570
A new functionalized resin has been applied in an on-line preconcentration system for copper and cadmium determination. Amberlite XAD-2 was functionalized by coupling it to 2-aminothiophenol (AT-XAD) by means of an NN spacer. This resin was packed in a minicolumn and used as sorbent in the on-line system. Metal ions were sorbed in the minicolumn, from which it could be eluted directly to the nebulizer-burner system of the flame atomic absorption spectrometer (FAAS). Elution of Cd(II) and Cu(II) from minicolumn can be made with 0.50 mol l−1 HCl or HNO3. The enrichment factors obtained were 28 (Cd) and 14 (Cu), for 60 s preconcentration time, and 74 (Cd) and 35 (Cu), if used 180 s preconcentration time. The proposed procedure allowed the determination of cadmium and copper with detection limits of 0.14 and 0.54 μg l−1, respectively, when used preconcentration periods of 180 s. The effects of foreign ions on the adsorption of these metal ions are reported. The validation of the procedure was carried out by analysis of certified reference material. This procedure was applied to cadmium and copper determination in natural, drink and tap water samples.  相似文献   

14.
《Analytical letters》2012,45(15):2801-2810
Abstract

A simple method for atomic absorption spectrometric determination of lead, copper, cadmium and nickel in drinking water samples after preconcentration by sorbing 1-(2-pyridylazo) 2-naphthol (PAN) complex of these metals on an activated carbon column has been established. The metal/PAN complexes were quantitatively retained on the activated carbon in the pH range 6-8. Metals retained on the activated carbon column were completely eluted with 2M HCl in acetone. This method was applied to the determination of lead, copper, cadmium and nickel in drinking water samples and good results were obtained (Recoveries >95%, relative standard deviations <7%, relative error <3%).  相似文献   

15.
A new solid — phase extraction sorbent was developed based on stepwise anchoring of two ligand molecules for the determination of copper, zinc, lead and cadmium in drinking water by flame AAS. Amberlite XAD-2 functionalized with 4′-(2-hydroxyphenylazo)-3′-methyl-1′-phenyl-2′-pyrazolin-5′-one (HPAPyr) was utilized for preconcentration/separation of these elements. The sorbent was prepared by two successive azo coupling reactions. First, 2-aminophenol was anchored to the amino groups in the resin resulted from nitration followed by reduction. Then, the resulted 2-aminophenol functionalized resin was further diazotized and coupled to the pyrazolone compound and the final product HPAPyr-XAD-2 was characterized by IR and elemental analysis. The optimum pH range for sorption, shaking time, exchange capacity, sample flow rate, preconcentration factor and interference from co-existing ions were investigated. All metal ions were quantitatively desorbed from the resin by 4.5 mol L−1 nitric acid solution. The sorbent provides limit of detection within the range 0.9–3.3 μg L−1 and concentration factor up to 250. The procedure was validated by analysis of certified material NIST-SRM 1577b. Application to drinking water showed satisfactory results with relative standard deviation RSD ≤ 8.5%.   相似文献   

16.
A new version of online preconcentration employing the pH-stacking mechanism has been proposed; it has been implemented by the example of a procedure for the capillary electrophoretic determination of trace zinc(II) and cadmium(II) with photometric detection in the visible spectrum region as complexes with Xylenol Orange. The analytical range is 2–400 μg/L for zinc(II) and 1–500 μg/L for cadmium(II).  相似文献   

17.
In this study, a novel adsorbent from a mesoporous family (MCM-41) coating with CoFe2O4 and piperazine was synthesized by a simple and easy route. Its application for simultaneous preconcentration of three heavy metals including lead, cadmium and copper in real samples followed by a flame atomic absorption spectroscopy was investigated. The central composite design was employed for investigating the most effective factors of pH, amount of adsorbent, the equilibrium time and their interactions. Under the optimum conditions, the detection limits for lead, cadmium and copper were 0.50, 0.30 and 0.25 μg L?1, respectively, and the preconcentration factor (PF) was 33. The presented method was successfully employed for the simultaneous determination of the three mentioned heavy metals in real samples with recoveries of 90%–105%. The accuracy of the suggested methods was also investigated through spiking samples and a reasonable range for recoveries from 90.3% to 107% was acquired. The isotherm models and thermodynamic parameters have also been studied. The new adsorbent showed fast adsorption kinetics within 10 min and maximum Langmuir monolayer capacities of 238.09, 178.57 and 208.33 mg g?1 for lead, cadmium and copper, respectively.  相似文献   

18.
《Analytical letters》2012,45(11):2285-2295
Abstract

Multi‐walled carbon nanotubes (MWNTs) were used as sorbent for flow injection (FI) on‐line microcolumn preconcentration coupled with flame atomic absorption spectrometry (FAAS) for determination of trace cadmium and copper in environmental and biological samples. Effective preconcentration of trace cadmium and copper was achieved in a pH range of 4.5–6.5 and 5.0–7.5, respectively. The retained cadmium and copper were efficiently eluted with 0.5 mol L?1 HCl for on‐line FAAS determination. The MWNTs packed microcolumn exhibited fairly fast kinetics for the adsorption of cadmium and copper, permitting the use of high sample flow rates up to at least 7.8 mL min?1 for the FI on‐line microcolumn preconcentration system without loss of the retention efficiency. With a preconcentration time of 60 sec at a sample loading flow rate of 4.3 mL min?1, the enhancement factor was 24 for cadmium and 25 for copper at a sample throughput of 45 h?1. The detection limits (3σ) were 0.30 and 0.11 µg L?1 for Cd and Cu, respectively. The precision (RSD) for 11 replicate measurements was 2.1% at the 10‐µg L?1 Cd level and 2.4% at the 10‐µg L?1 Cu level. The developed method was successfully applied to the determination of trace Cd and Cu in a variety of environmental and biological samples.  相似文献   

19.
The formation of a complex with 2-(5-brom-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP) and cloud point extraction have been applied to the preconcentration of cadmium followed by its determination by graphite furnace atomic absorption spectrometry (GFAAS) using octylphenoxypolyethoxyethanol (TritonX-114) as surfactant. The chemical variables affecting the separation were optimized. At pH 7.0, preconcentration of only 10 mL of sample in the presence of 0.05% TritonX-114 and 2.5 × 10−6 M 5-Br-PADAP enabled the detection of 0.04 μg/L cadmium. The enrichment factor was 21 for cadmium. The regression equation was A = 0.0439C(μg/L) + 7.2 × 10−3. The correlation coefficient was 0.9995. The precision for 10 replicate determinations at 10 μg/L Cd was 2.7% relative standard deviation (RSD). The proposed method has been applied to the determination of cadmium in water samples. The text was submitted by the authors in English.  相似文献   

20.
The preconcentration and separation of copper, cadmium, cobalt and nickel 8-quinolinolates in solutions of high salinity including synthetic sea water is studied with phenolphthalein or 2-naphthol as collector and octadecylamine as surfactant. A simplex optimization is applied. Yields > 90% are achieved for Ni, Co and Cd with both collectors, but the copper yield is low. Flame atomic absorption spectrometry is used for the final measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号