首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In order to investigate the secondary cluster ion emission process of organo-metallic compounds under keV ion bombardment, self-assembled monolayers (SAMs) of alkanethiols on gold are ideal model systems. In this experimental study, we focussed on the influence of the primary ion species on the emission processes of gold-alkanethiolate cluster ions from a hexadecanethiol SAM on gold. For this purpose, we carried out time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements using the following primary ion species and acceleration voltages: Ar+, Xe+, SF5+ (10 kV), Bi+, Bi3+(25 kV), Bi32+, Bi52+, Bi72+ (25 kV).It is well known that molecular ions M and gold-alkanethiolate cluster ions AuxMy with M = S-(CH2)15-CH3, x − 3 ≤ y ≤ x + 1, x, y > 0, show intense peaks in negative mass spectra. We derived yields YSI exemplarily for the molecular ions M and the gold-hexadecanethiolate cluster ions Auy+1My up to y = 8 and found an exponentially decreasing behaviour for increasing y-values for the cluster ions.In contrast to the well-known increase in secondary ion yield for molecular secondary ions when moving from lighter to heavier (e.g. Ar+ to Xe+) or from monoatomic to polyatomic (e.g. Xe+ to SF5+) primary ions, we find a distinctly different behaviour for the secondary cluster ions. For polyatomic primary ions, there is a decrease in secondary ion yield for the gold-hexadecanethiolate clusters whereas the relative decrease of the secondary ion yield ξY with increasing y remains almost constant for all investigated primary ions.  相似文献   

2.
We investigated the enhancement of the secondary ion intensity in the TOF-SIMS spectra obtained by Au+ and Au3+ bombardment in comparison with Ga+ excitation using polymer samples with different molecular weight distributions. Since the polymer samples used in this experiment have a wide molecular weight distribution, the advantages of the gold cluster primary ion source over monoatomic ion could accurately be evaluated. It was observed that the degree of fragmentation decreased by the usage of cluster primary ion beam compared with monoatomic ion beam, which was observed as a shift of the intensity distribution in the spectra. It was also found out that the mass effect of Au+ and Ga+ as monoatomic primary ion, resulted in about 10-60 times of enhancement for both samples with different molecular distributions. On the other hand, the Au3+ bombardment caused intensity enhancement about 100-2600 compared with Ga+ bombardment, depending on the mass range of the detected secondary ion species. The cluster primary ion effect of Au3+, compared with Au+, therefore, was estimated to be about 10-45.  相似文献   

3.
Static ToF-SIMS was used to evaluate the effect of gold condensation as a sample treatment prior to analysis. The experiments were carried out with a model molecular layer (Triacontane M = 422.4 Da), upon atomic (In+) and polyatomic (Bi3+) projectile bombardment. The results indicate that the effect of molecular ion yield improvement using gold metallization exists only under atomic projectile impact. While the quasi-molecular ion (M+Au)+ signal can become two orders of magnitude larger than that of the deprotonated molecular ion from the pristine sample under In+ bombardment, it barely reaches the initial intensity of (M−H)+ when Bi3+ projectiles are used. The differences observed for mono- and polyatomic primary ion bombardment might be explained by differences in near-surface energy deposition, which influences the sputtering and ionization processes.  相似文献   

4.
The usefulness of the usage of cluster primary ion source together with an Ag substrate and detection of Ag cationized molecular ions was studied from the standpoint to realize high sensitivity TOF-SIMS analysis of organic materials. Although secondary ions from polymer thin films on a Si substrate can be detected in a higher sensitivity with Au3+ cluster primary ion compared with Ga+ ion bombardment, it was clearly observed that the secondary ion intensities from samples on an Ag substrate showed quite a different tendency from that on Si. When monoatomic primary ions, e.g., Au+ and Ga+, were used for the measurement of the sample on an Ag substrate, [M+Ag]+ ions (M corresponds to polyethylene glycol molecule) were detected in a high sensitivity. On the contrary, when Au3+ was used, no intensity enhancement of [M+Ag]+ ions was observed. The acceleration energy dependence of the detected secondary ions implies the different ionization mechanisms on the different substrates.  相似文献   

5.
Recent studies have shown TOF-SIMS to be an appropriate method for the detailed examination of the immobilization process of PNA and its ability to hybridize to unlabeled complementary DNA fragments. Unlabeled single-stranded DNA was hybridized to Si wafer biosensor chips containing both complementary and non-complementary immobilized PNA sequences. The hybridization of complementary DNA could readily be identified by detecting phosphate-containing molecules from the DNA backbone. An unambiguous discrimination was achieved between complementary and non-complementary sequences.In order to optimize detection parameters, different primary ions were applied, including monoatomic ions (Bi+) as well as cluster ions (Bi2+, Bi3+, Bi4+, Bi3++, Bi5++), and secondary ion yield behavior and formation efficiencies were studied. It was found that cluster primary ions resulted in a significantly increased yield of DNA-correlated fragments, enabling higher signal intensities and better secondary ion efficiencies.TOF-SIMS is undoubtedly a highly useful technique for identifying hybridized DNA on PNA biosensor chips. It is suitable for studying the complexity of the immobilization and hybridization processes and may provide a rapid method for DNA diagnostics. With the absence of the labeling procedure and the simultaneous increase of the phosphate signal as a result of increasing DNA sequence length, this technique comes to be especially useful for the direct analysis of genomic DNA.  相似文献   

6.
Self-assembled monolayers represent well-defined systems that is a good model surface to study the effect of primary ion beams used in secondary ion mass spectrometry. The effect of polyatomic primary beams on both aliphatic and aromatic self-assembled monolayers has been studied. In particular, we analysed the variation of the relative secondary ion yield of both substrate metal-cluster (Aun) in comparison with the molecular ions (M) and clusters (MxAuy) by using Bi+, Bi3+, Bi5+ beams. Moreover, the differences in the secondary ion generation efficiency are discussed. The main effect of the cluster beams is related to an increased formation of low-mass fragments and to the enhancement of the substrate related gold-clusters. The results show that, at variance of many other cases, the static SIMS of self-assembled monolayers does not benefit of the use of polyatomic primary ions.  相似文献   

7.
The damage characteristics of polyethylene terephthalate (PET) have been studied under bombardment by C60+, Au3+ and Au+ primary ions. The observed damage cross-sections for the three ion beams are not dramatically different. The secondary ion yields however were significantly enhanced by the polyatomic primary ions where the secondary ion yield of the [M + H]+ is on average 5× higher for C60+ than Au3+ and 8× higher for Au3+ than Au+. Damage accumulates under Au+ and Au3+ bombardment while C60+ bombardment shows a lack of damage accumulation throughout the depth profile of the PET thick film up to an ion dose of ∼1 × 1015 ions cm−2. These properties of C60+ bombardment suggest that the primary ion will be a useful molecular depth profiling tool.  相似文献   

8.
T. Ohwaki  Y. Taga 《Surface science》1985,157(1):L308-L314
The yield and energy distribution of positive secondary ions emitted from Si under N2+ ion bombardment were measured. The obtained mass peaks correspond to three types of secondary ion species, that is, physically sputtered ions (Si+, Si2+), chemically sputtered ions (SiN+ Si2N+) and doubly charged ions (Si2+). The dependence of secondary ion emission on the primary ion energy was studied in a range of 2.0–20.0 keV. The yields of physically and chemically sputtered ions were almost independent of the primary ion energy. The yield of the doubly charged ion strongly depended on the primary ion energy. The energy distribution of secondary ions of the three types showed the same dependence on the primary ion energy. The most probable energy of the distribution increased with the primary ion energy. On the other hand, for the energy distribution curves of sputtered ions, the tail factors N in E?N were constant and showed a m/e dependence.  相似文献   

9.
Secondary-ion mass spectra and energy distributions upon bombarding a gallium arsenide single crystal using Bim+(m = 1–5) cluster ions with energies of 2–12 keV are investigated. The gallium cluster ion yield grew nonadditively with the number of atoms in the cluster projectiles. A quasi-thermal component found in the energy spectra of secondary Ga+ and Ga2+ ions is indicative of the occurrence of the thermal spike mode upon cluster ion bombardment. The quasi-thermal component in the yield of atomic Ga+ ions upon bombardment with Bi2+–Bi5+–ions is 35–75%.  相似文献   

10.
The spectra of secondary ion emission under the bombardment of a B-doped Si target by multiply charged Si q+ ions (q = 1?C5) have been studied in the energy range of 1 to 10 keV per unit of charge. A multifold increase in the yield of secondary cluster Sk n + ions, multiply charged Si q/+ ion (q = 1?C3), and H+, C+, B+, Si2N+, Si2O+ is observed as the charge of the multiply charged ions increases. The increase in the yield of secondary ions with increasing charge of the multiply charged-ion charge is most significant for ions with relatively high ionization potentials.  相似文献   

11.
In this study, a series of random copolymers of methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) were prepared as surface-initiated polymer (SIP) films on silicon substrates using atom transfer radical polymerization. Positive and negative ion static time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to characterize SIP films with different MMA/EGDMA monomer ratios in an attempt to quantify their surface composition. However, matrix effects in the positive and negative ion modes led to preferential secondary ion generation from the EGDMA monomer and suppression of secondary ions characteristic of the MMA monomer, precluding accurate quantification using standard linear quantification methods. Ion-induced degradation of these films under 5 keV SF5+ bombardment was also examined to determine the effect of cross-linking on the accumulation of ion-induced damage. Increasing incorporation of the EGDMA cross-linker in the SIP films decreased the sputter rate and increased the rate of damage accumulation under extended (>1014 ions/cm2) 5 keV SF5+ bombardment. Comparison of the ion bombardment data with thermal degradation of cross-linked PMMA suggests that the presence of the cross-linker impedes degradation by depolymerization, resulting in ion-induced damage accumulation. The increased rate of ion-induced damage accumulation with increased cross-link density also suggests that polymers that can form cross-links during ion bombardment are less amenable to depth profiling using polyatomic primary ions.  相似文献   

12.
In this study on pure water ice, we show that protonated water species [H2O]nH+ are more prevalent than (H2O)n+ ions after bombardment by Au+ monoatomic and Au3+ and C60+ polyatomic projectiles. This data also reveals significant differences in water cluster yields under bombardment by these three projectiles. The amino acid alanine and the nucleic base adenine in solution have been studied and have been shown to have an effect on the water cluster ion yields observed using an Au3+ ion beam.  相似文献   

13.
We analyzed TOF-SIMS spectra obtained from three different size of fullerenes (C60, C70 and C84) by using Ga+, Au+ and Au3+ primary ion beams and investigated the fragmentation patterns, the enhancement of secondary ion yields and the restraint of fragmentation by using cluster primary ion beams compared with monoatomic primary ion beams. In the TOS-SIMS spectra from C70 and C84, it was found that a fragment ion, identified as C60+ (m/z = 720), showed a relatively high intensity compared with that of other fragment ions related to C2 depletion. It was also found that the Au3+ bombardment caused intensity enhancement of intact molecules (C60+, C70+ and C84+) and restrained the fragmentation due to C2 depletion.  相似文献   

14.
The influence of the primary ion species (He+, Ne+, Ar+, Kr+, Xe+ and SF5+) and substrate material (graphite, Al, Cu, Ag and Pb) on the secondary ion emission from molecular overlayers of the purine base adenine was investigated in dependence on the layer thickness. The measurements showed an increasing yield with increasing mass of the primary ions and its number of constituents. The yield enhancement, defined as the ratio between the maximum yield obtained from approximately a monolayer coverage of adenine to the yield obtained from a multilayer coverage, was shown to depend on the substrate material. However, a clear dependence on the primary ion species was not found.  相似文献   

15.
A surface-ionization method is developed for measuring the integral yields of neutral particles sputtered under the effect of ion bombardment. An investigation is performed to compare the integral yield of particles sputtered upon bombarding indium with Bi m + cluster ions (m = 1?C7) in the energy range of 2?C10 keV and the secondary ion emission under bombardment with Bi m + cluster ions (m = 1?C5) in the energy range of 6?C18 keV. A nonadditive increase in the indium sputtering coefficient is observed with an increasing number of atoms in the bombarding clusters.  相似文献   

16.
Enhancement of negative sputtered ion yields by oxygen (either O+2 bombardment or O2 gas with Ar+ bombardment) is demonstrated for Si?, As?, P?, Ga?, Cu? and Au?, sputtered from a variety of matrices. Because oxygen also enhances positive ion yields of the same species, this effect cannot be simply explained on the basis of existing sputtered ion emission models. To rationalize these phenomena, a surface polarization model is developed which invokes localized electron emissive or electron retentive sites associated with differently oriented surface dipoles in the oxygenated surface. Such sites are considered to dominate the emission of negative and positive ions respectively. The model is shown to correctly predict that Au+ and Au? ion yields are much more strongly enhanced by oxygen in dilute Au-Al alloys than in pure gold.  相似文献   

17.
Pristine and Au-covered molecular films have been analyzed by ToF-SIMS (TRIFT™), using 15 keV Ga+ (FEI) and 15 keV C60+ (Ionoptika) primary ion sources. The use of C60+ leads to an enormous yield enhancement for gold clusters, especially when the amount of gold is low (2 nmol/cm2), i.e. a situation of relatively small nanoparticles well separated in space. It also allows us to extend significantly the traditional mass range of static SIMS. Under 15 keV C60+ ion bombardment, a series of clusters up to a mass of about 20,000 Da (Au100: 19,700 Da) is detected. This large yield increase is attributed to the hydrocarbon matrix (low-atomic mass), because the yield increase observed for thick metallic films (Ag, Au) is much lower. The additional yield enhancement factors provided by the Au metallization procedure for organic ions (MetA-SIMS) have been measured under C60+ bombardment. They reach a factor of 2 for the molecular ion and almost an order of magnitude for Irganox fragments such as C4H9+, C15H23O+ and C16H23O.  相似文献   

18.
Complex study of surface and bulk defects was performed by field ion and scanning tunnel microscopy. Specimens were irradiated by 20-to 50-keV He+, Ar+, and Bi+ ions at room temperature. The irradiation fluences were between 1018 and 1020 ion m−2. Calculated parameters of depletion zones and atomic displacement cascades were compared with theoretical estimates. It was shown that controlled ion bombardment of material surface is an effective tool for fabricating field-emission cathodes for vacuum microelectronics.  相似文献   

19.
Abstract

Electron diffraction studies have been made of polycrystalline Ni films irradiated with well separated beams of ions of different nature, namely ions of inert (He+, Ne+, Ar+, Kr+, Xe+) and reactive (N+ and O+) gases. The Ni films were prepared under vacuum conditions (P? 3·10?6Pa during evaporation) preventing an appreciable contamination of the films with impurities. The samples were irradiated at T? 300 K with ion beams of energies from 10 to 100 keV in the dose range between 5·1016 cm?2 and the value leading to sample destruction.

Irradiation with noble gas ions revealed no phase transitions in the Ni films. A similar result was obtained in irradiation of Fe and Cr films with He+ ions. The bombardment of Ni films with reactive gas ions does cause changes in the lattice structure of the samples under study, depending on the nature of the bombarding ions. The N+ ion bombardment gives rise to the hcp phase with the lattice parameters typical of the Ni3N compound, and the O+ ion bombardment results in the fcc phase with the NiO-type parameter.

The conclusion is drawn on the chemical origin of the phase transformations in the Ni films under ion bombardment. The necessity of revising the concept about the polymorphous nature of phase transformations induced in the films of transition metals by ion bombardment is substantiated.  相似文献   

20.
We investigated the emission of the secondary ions stimulated by single impacts of 136 keV Au4004+ projectiles. The study was carried out on targets of glycine, phenylalanine, and C60. In addition, a target of C60 was examined with 18 keV C60+ projectiles. The experiments were performed in the event-by-event bombardment/detection mode. The secondary ions were identified with linear time-of-flight mass spectrometer equipped with an 8-anode detector. The Au4004+ projectile induces abundant multi-ion emission, for instance the average number of detected ions (atomic, fragment, molecular and cluster ions) emitted per event from glycine target is 12.5. The glycine intact molecular ion (Gly) yield is 1.14. The bombardment of a C60 target results in the efficient emission of multiple intact C60 (total yield is 0.15).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号