首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the electron energy loss spectra for Ar clusters as a function of incident electron energy and of cluster size. In spectra measured with 100 eV incident electron energy the bulk excitation peak becomes visible for a mean cluster size above 170 atoms per cluster. For 250 eV incident electron energy the bulk excitation peak is clearly observable even for a mean cluster size of 120 atoms per cluster. These experimental results are qualitatively reproduced by a simple calculation that accounts for the mean free path of electrons in Ar clusters; i.e., the penetration depth of incident electrons into the cluster.  相似文献   

2.
Surface termination and electronic properties of InN layers grown by high pressure chemical vapor deposition have been studied by high resolution electron energy loss spectroscopy (HREELS). HREEL spectra from InN after atomic hydrogen cleaning show N-H termination with no indium overlayer or droplets and indicate that the layer is N-polar. Broad conduction band plasmon excitations are observed centered at 3400 cm−1 in HREEL spectra with 7 eV incident electron energy which shift to 3100 cm−1 when the incident electron energies are 25 eV or greater. The shift of the plasmon excitations to lower energy when electrons with larger penetration depths are used is due to a higher charge density on the surface compared with the bulk, that is, a surface electron accumulation. These results indicate that surface electron accumulation on InN does not require excess indium or In-In bonds.  相似文献   

3.
The Fuchs-Kliewer phonon spectrum of single crystal Co3O4(110) has been analyzed by high resolution electron energy loss spectroscopy (HREELS) and the four fundamental phonon losses have been identified at 26.8, 47.5, 71.1 and 84.7 meV (216, 383, 573 and 683 cm−1). This is the first HREELS study reported for an intrinsic spinel single-crystal surface with primary focus on the Fuchs-Kliewer phonon structure. The Co3O4 crystal is first characterized by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED), which establish the composition, cleanliness, and order of the (110) surface. Electron scattering is then used to obtain a series of well-resolved Fuchs-Kliewer phonon spectra over 2.25-14.25 eV incident electron energy range. The variation in phonon intensity with primary beam energy is shown to agree with that predicted by dielectric theory.  相似文献   

4.
Carbon contamination on extreme ultraviolet (EUV) optics has been observed in EUV lithography. In this paper, we performed in situ monitoring of the build-up and removal of carbon contamination on Mo/Si EUV multilayers by measuring the secondary electron yield as a function of primary electron energy. An electron beam with an energy of 2 keV was used to simulate the EUV radiation induced carbon contamination. For a clean EUV multilayer, the maximum secondary electron yield is about 1.5 electrons per primary electron at a primary electron energy of 467 eV. The maximum yield reduced to about 1.05 at a primary electron energy of 322 eV when the surface was covered by a non-uniform carbon layer with a maximum thickness of 7.7 nm. By analyzing the change in the maximum secondary electron yield with the final carbon layer thickness, the limit of detection was estimated to be less than 0.1 nm.  相似文献   

5.
We used spectroscopic photoemission and low-energy electron microscopy to measure two-dimensional (2D) emission patterns of secondary electrons (SEs) emitted from graphene layers formed on SiC(0 0 0 1). The 2D SE patterns measured at the SE energies of 0-50 eV show energy-dependent intensity distributions in the 6-fold symmetry. The SE patterns exhibit features ascribed to energy band structures of 2D free electrons, which would prove that electrons are partially confined in thin graphene layers even above the vacuum level.  相似文献   

6.
The NEutron-induced POsitron source MUniCh (NEPOMUC) at the research reactor FRM II delivers a low-energy positron beam (E = 15-1000 eV) of high intensity in the range between 4 × 107 and 5 × 108 moderated positrons per second. At present four experimental facilities are in operation at NEPOMUC: a coincident Doppler-broadening spectrometer (CDBS) for defect spectroscopy and investigations of the chemical vicinity of defects, a positron annihilation-induced Auger-electron spectrometer (PAES) for surface studies and an apparatus for the production of the negatively charged positronium ion Ps. Recently, the pulsed low-energy positron system (PLEPS) has been connected to the NEPOMUC beam line, and first positron lifetime spectra were recorded within short measurement times. A positron remoderation unit which is operated with a tungsten single crystal in back reflection geometry has been implemented in order to improve the beam brilliance. An overview of NEPOMUC's status, experimental results and recent developments at the running spectrometers are presented.  相似文献   

7.
We show that the timing properties of a pulsed low-energy positron lifetime beam can be conveniently tested by an electron beam. We apply this method to study the time resolution of the beam and electron scattering in flat and ‘sawtooth’ shaped choppers. The results show that (i) time resolution of 160 ps is obtained, (ii) the scattering of the electrons and the secondary electron yield of the flat chopper make the time resolution worse and background poor, and (iii) both these problems can be solved by using a ‘sawtooth’ shaped chopper. We also compare these results to beam simulations.  相似文献   

8.
Dust grains – objects of different shapes with a size distribution from micro to nanometers – are generally considered as a part of many space as well as laboratory plasmas. Among various dust charging processes, electron-induced secondary emission plays an important role in plasmas containing a noteworthy portion of high-energy electrons. Since a part of secondary electrons has not the energy high enough to overcome the surface potential barrier, the resulting grain charge is determined not only by the secondary emission yield (related to the grain material and size) but also by the secondary electron spectrum. We have developed a model of secondary electron emission from small dust grains. In the present contribution, we discuss the profile of a secondary emission yield that can be received from the model and the measured equilibrium grain charge, both as functions of an incident electron beam energy. A comparison of these quantities leads to an estimation of secondary electron spectra. We have found that: (1) the energy spectrum of secondary electrons does not change with the energy of primary electrons and (2) the energy spectrum depends on the target material being harder for gold and silver than for glass grains.  相似文献   

9.
The time-of-flight technique combined with a surface-ionization-based detector has been used to investigate the yield and energy distribution of sodium atoms escaping in electron-stimulated desorption (ESD) from adlayers on the surface of molybdenum oxidized to various degrees and maintained at T=300 K as functions of incident electron energy and surface coverage by sodium. The sodium-atom ESD threshold is about 25 eV, irrespective of sodium coverage and extent of molybdenum oxidation. Molybdenum covered by an oxygen monolayer exhibits secondary thresholds at ∼40 eV and ∼70 eV, as well as low-energy tailing of the energy distributions, its extent increasing with surface coverage by sodium Θ. The most probable kinetic energies of sodium atoms are about 0.23 eV, irrespective of the degree of molybdenum oxidation and incident electron energy at Θ=0.125, and decrease to 0.17 eV as the coverage grows to Θ=0.75. The results obtained are interpreted within a model of Augerstimulated desorption, in which adsorbed sodium ions are neutralized by Auger electrons appearing as the core holes in the 2sO, 4sMo, and 4pMo levels are filled. It has been found that the appearance of secondary thresholds in ESD of neutrals, as well as the extent of their energy distributions, depend on surface coverage by the adsorbate. Fiz. Tverd. Tela (St. Petersburg) 40, 768–772 (April 1998)  相似文献   

10.
Absolute yields of secondary electrons and negative ions resulting from collisions of Na+ with Mo(100) and a polycrystalline molybdenum surface have been measured as a function of the oxygen coverage of the surface for impact energies below 500 eV. The sputtered negative ions have been identified with mass spectroscopy, and O is found to be the dominant sputtered negative ion for the surfaces at all oxygen coverages and impact energies. Both the electron and O yields have an impact energy threshold at about 50 eV and exhibit a strong dependence on oxygen coverage. The kinetic energy distributions of the secondary electrons and sputtered O were determined as functions of the oxygen coverage and impact energy. The distributions for O are characterized by a narrow low-energy peak (at 1–2 eV) followed by a low-level high-energy tail. The secondary electrons have a narrow (FWHM 1–2 eV) kinetic energy distribution, centered approximately at 1–2 eV. The shapes of the distributions and their most probable energies are essentially invariant with impact energy, oxygen coverage and the nature of the Mo surface. The emission is explained and analyzed in terms of a simple model which involves a collision-induced electronic excitation of the MoO surface state. The decay of this excited state leads to the production of both secondary electrons and O with energy distributions and yields comparable to those observed.  相似文献   

11.
《Physics letters. A》2020,384(24):126593
In this study, a fully self-consistent method was developed to obtain the wave functions of the positron and electrons in molecules simultaneously. The wave function of a positron at room temperature, with a characteristic energy of approximately 0.04 eV [1], was used to analyse the experimental results of its annihilation in helium, neon, hydrogen, and methane molecules. The interactions between the positron and molecule provide a significant correction in the gamma-ray spectra of the annihilating electron–positron pairs. It was also observed that high-order correlations offered almost no correction in the spectra, as the interaction between the low-energy positron and electrons cannot drive the electrons into excited electronic states. More accurate studies, which consider the coupling of the positron–electron pair states and vibration states of nuclei, must be undertaken.  相似文献   

12.
The backscattered electron spectra from graphite sample were studied both experimentally and theoretically at impact energies between 500 and 5000 eV. The angle of the incident electron beam was 50° and the detection angle was 0° with respect to the surface normal, respectively. Monte Carlo (MC) simulations were performed based on the Classical Transport Theory (CTT) model to mimic the experimental spectra. In our simulations, both elastic and inelastic scattering of primary electrons and secondary electron emission from graphite are taken into account. There is found satisfactory agreement between measured and calculated electron spectra.  相似文献   

13.
The intensity profile for the elastic specular reflection of 5–100 eV positrons from a LiF(100) surface (ang1e of incidence 45°) has been measured using a simple time-of-flight spectrometer. The profile exhibits strong maxima below 25 eV and a smaller peak at 57 eV. Positron energy loss spectra have also been measured for a range of incident energies by retarding field analysis of the scattered beam. The mean energy loss appears to increase with increasing incident beam energy. Both the elastic and inelastic results are compared with similar data for slow-electron scattering obtained with the same apparatus.  相似文献   

14.
Two energy loss spectra of 1000 and 3000 eV electrons reflected from a Cu surface are analysed to give the normalized distribution of energy losses in a single surface and volume inelastic scattering process. These single scattering loss distributions are subsequently fitted to theoretical expressions for the differential inverse inelastic mean free path (DIIMFP) and differential surface excitation probability (DSEP) providing the real and imaginary part of the dielectric function in terms of a set of Drude-Lorentz oscillators. The optical constants obtained in this way are subjected to several sum rule checks and compared with other experimental data and with density-functional-theory (DFT) calculations. The present optical data agree excellently with the DFT-results, while the earlier optical data deviate significantly from these two data sets for energies below 30 eV. The mean free path for inelastic electron scattering for energies below 2000 eV is derived from the dielectric data and is found to agree satisfactorily with values reported earlier.  相似文献   

15.
The low-energy bombardment of Au (1 1 1) surface by noble metal atoms is studied with molecular dynamics (MD) simulations. With the incident-energy dependence of adatom yields, sputtering yields, and vacancy yields for different projectiles, we find that the implantation of projectiles in shallow layers below surface can be distinguished by subplantation (in the first and second layers) and implantation (deeper than the third layer). The transition from subplantation to implantation occurs at the incident energy of about 45 eV for the low-energy bombardment of noble metal atoms on Au (1 1 1). The incident-energy dependence of defect yields is obviously different for the subplantation and implantation of projectiles. Based on our MD simulations, we discuss the influence of low-energy bombardment on film growth and the guide to the search for optimum deposition parameters.  相似文献   

16.
Ultrathin conjugated layers of Pyronine B were thermally deposited in UHV on the surface of perylene tetracarboxylic acid dianhydride (PTCDA) film. The structure of unoccupied electron states located 5-20 eV above the Fermi level (EF) and the surface potential were monitored during the Pyronine B overlayer deposition, using an incident beam of low-energy electrons according to the total current electron spectroscopy (TCS) method. Electronic work function of the PTCDA surface changed from 4.9 ± 0.1 eV, during the Pyronine B deposition due to the change of the contents of the surface layer, until it reached a stable value 4.6 ± 0.1 eV at the Pyronine B film thickness 8-10 nm. The interface dipole corresponds to electron transfer from the Pyronine B overlayer to the PTCDA surface and the polarization in the Pyronine B overlayer was found confined within approximately 1 nm near the interfaces. The edges of major bands of density of unoccupied electronic states (DOUS) of PTCDA substrate and of the Pyronine B overlayer were unaffected by the process of the interface formation. The major TCS spectral features of the Pyronine B film corresponding to the DOUS band edges were identified and the assignment of the π*, σ*(C-C) and σ*(CC) character was suggested.  相似文献   

17.
Molecular dynamics (MD) simulation is carried out to study the transport behaviors of a single deposited atom in Cu film homoepitaxy. We consider the normal Cu incident atoms impinging on the Cu (0 0 1) surface at four possible local impact sites (top, bridge, hollow and general). The observed transport behaviors of the deposited atom onto the surface include: direct adsorption (DA), penetration by atomic exchange, and transient penetration (TP), which a deposited atom penetrates the interstitial site and then rapidly migrates to a stable site on the surface. The results show that transport behaviors of the deposited atom are closely related to both the local impact site and the incident energy. The maximum increment of kinetic energy at every impact site approaches to a certain value except for the incident energy below 2.0 eV. Furthermore, as the incident energy is higher than the penetration threshold, TP behavior could be observed again in some energy ranges. This interesting phenomenon, which cannot be explained by the existing theories, is possibly attributed to the dynamical competition between the deposited atom and substrate atoms.  相似文献   

18.
We present computer simulations of a new design of a variable energy positron lifetime beam that uses for a start signal the secondary electron emission from a 25-nm thick carbon foil (C-foil) located in front of the sample. A needle of ∼30 μm diameter is positioned on-axis right behind the foil, creating a radial electric field that deflects the secondary electrons radially outward so as to miss the sample and to hit the micro-channel plate (MCP) detector placed down beam. The MCP signal provides the start signal for the positron lifetime spectrometer. A grid can be further introduced between the sample holder and the MCP to yield a cleaner signal by preventing the positrons with large transmitted scattering angle from hitting the MCP. The cylindrical symmetry of this design reduces the experimental complexity and offers good timing resolution. We show that the design is robust against the transmitted energy and angle of the secondary electrons and positrons.  相似文献   

19.
Maurizio Dapor 《Surface science》2006,600(20):4728-4734
A Monte Carlo simulation is described and utilized to calculate the energy distribution spectra of the electrons backscattered by silicon dioxide. Spectra are presented for incident energies of 250 eV, 500 eV, and 1000 eV. Spectra interpretation is based on a semiquantitative valence-band structure model for SiO2 crystals.  相似文献   

20.
The chemical state of sulfur and surface structure on low-energy S+ ion-treated p-InP(1 0 0) surface have been investigated by high-resolution X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED). S+ ion energy over the range of 10-100 eV was used to study the effect of ion energy on surface damage and the process of sulfur passivation on p-InP(1 0 0) by S+ ion beam bombardment. It was found that sulfur species formed on the S+ ion-treated surface. The S+ ions with energy above 50 eV were more effective in formation of In-S species, which assisted the InP surface in reconstruction into an ordered (1 × 1) structure upon annealing. After taking into account physical damage due to the process of ion bombardment, we found that 50 eV was the optimal ion energy to form In-S species in the sulfur passivation of p-InP(1 0 0). The subsequent annealing process removed donor states that were introduced during the ion bombardment of p-InP(1 0 0). Results of theoretical simulations by Transport of Ions in Materials (TRIM) are in accordance with those of experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号