首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The stable adsorption sites for both Ga and N ions on the ideal and on the reconstructed LiNbO3 (0 0 0 1) surface are determined by means of first-principle total energy calculations. A single N layer is found to be more strongly bound to the substrate than a single Ga layer. The adsorption of a GaN monolayer on the polar substrate within different orientations is then modeled. On the basis of our results, we propose a microscopic model for the GaN/LiNbO3 interface. The GaN and LiNbO3 (0 0 0 1) planes are parallel, but rotated by 30° each other, with in-plane epitaxial relationship [1 0 0]GaN‖ [1 1  0]LiNbO3. In this way the (0 0 0 1) plane lattice mismatch between GaN and LiNbO3 is minimal and equal to 6.9% of the GaN lattice constant. The adsorbed GaN and the underlying LiNbO3 substrate have parallel c-axes.  相似文献   

2.
Using the interaction parameters up to the third neighbors and activated form of O and CO diffusion and their reaction, the model has been proposed for Monte-Carlo simulations describing the catalytic O + CO → CO2 reaction and occurring phase transitions on Pd(1 1 1) surface. Upon adsorption of CO the pre-adsorbed oxygen transforms from p(2 × 2)O phase into and phases in the limit of room and moderate temperatures, respectively. We demonstrate that the kinetic effects determine both the occurrence of the p(2 × 1)O and disappearance of the phases at moderate and low temperatures, respectively. Using reaction rate as a fit parameter, we show that at room temperature the start of the reaction can be synchronized with the occurrence of phase.  相似文献   

3.
Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is applied to study NH3, adsorbed from the gas phase, and its decomposition products, i.e. NHx species, on Rh nanoparticles, produced by spincoating from a RhCl3 solution in water followed by reduction. A silicon ATR crystal with a hydroxilated SiO2 layer acts as the support for the nanoparticles. Upon exposure to NH3 in the vacuum chamber, NH3 adsorbed to both silica and Rh is detected (sensitivity ∼5 × 10−5 absorbance units). Interaction of the NH3 with the silica OH groups is observed around ∼2840 cm−1 in combination with peaks showing the disappearance of unperturbed OH vibrations between 3500 and 3700 cm−1. In addition, NH bend vibrations at 1634 cm−1 and NH stretch vibrations at 3065 and 3197 cm−1 are observed for substrate temperatures between 20 and 100 °C. The latter two correspond to NH on Rh, as verified with a sample without Rh, and probably correspond to undecomposed NH3. Moreover, they remain after evacuation, suggesting strongly bound species. For a substrate temperature of 75 and 100 °C, additional NH stretch peaks at 3354 and 3283 cm−1 are observed, possibly due to NH2 intermediates, indicating NH3 decomposition. It is shown that ATR-FTIR can contribute to the sensitive detection of adsorption and decomposition of gaseous species on realistic planar model catalysts.  相似文献   

4.
We investigated carbon monoxide (CO) adsorption and desorption behaviors on 0.1-nm-, 0.15-nm-, and 0.3-nm-thick-Pd-deposited Cu(1 1 0) surfaces using infrared reflection absorption (IRRAS) and temperature-programmed desorption (TPD) spectroscopic methods. CO was exposed to the 0.1-nm-thick-Pd/Cu(1 1 0) surface at the substrate temperature of 90 K. The IR band attributable to CO bonded to Cu atoms emerged at 2092 cm−1: the band was located at 2100 cm−1 at saturation coverage, with a shoulder at 2110 cm−1. In addition to these bands, weak absorptions attributable to the PdCO bonds appeared at 2050 and 1960 cm−1. With increasing Pd thickness, the Pd related-bands became increasingly prominent. Particularly at the early stage of exposure, the band at 2115 cm−1 became visible. The band at 2117 cm−1 dominated the spectra all through the exposures for the 0.3-nm-thick-Pd surface. The TPD spectra of the surfaces showed two remarkable features at around 220-250 and 320-390 K, ascribable ,respectively, to CuCO and PdCO. The desorption peaks shifted to higher temperatures with increasing Pd thickness. Based on the TPD and IRRAS results, we discuss the adsorption-desorption behaviors of CO on the Pd/Cu(1 1 0) surfaces.  相似文献   

5.
The interactions of H and H2 with W(1 0 0)-c(2 × 2)Cu and W(1 0 0) have been investigated through density functional theory (DFT) calculations to elucidate the effect of Cu atoms on the reactivity of the alloy. Cu atoms do not alter the attraction towards top-W sites felt by H2 molecules approaching the W(1 0 0) surface but make dissociation more difficult due to the rise of late activation barriers. This is mainly due to the strong decrease in the stability of the atomic adsorbed state on bridge sites, the most favourable ones for H adsorption on W(1 0 0). Still, our results show unambiguously that H2 dissociative adsorption on perfect terraces of the W(1 0 0)-c(2 × 2)Cu surface is a non-activated process which is consistent with the high sticking probability found in molecular beam experiments at low energies.  相似文献   

6.
Recently the finding of an indication for a decrease of the proton-to-electron mass ratio μ = mp/me by 0.002% in the past 12 billion years was reported in the form of a Letter [E. Reinhold, R. Buning, U. Hollenstein, P. Petitjean, A. Ivanchik, W. Ubachs, Phys. Rev. Lett. 96 (2006) 151101]. Here we will further detail the methods that led to that result and put it in perspective. Laser spectroscopy on molecular hydrogen, using a narrow-band and tunable extreme ultraviolet laser system at the Laser Centre Vrije Universiteit Amsterdam, results in transition wavelengths of spectral lines in the Lyman and Werner band systems at an accuracy of (4-11) × 10−8, depending on the wavelength region. This corresponds to an absolute accuracy of 0.000004-0.000010 nm. A database of 233 accurately calibrated H2 lines is presented here for future reference and comparison with astronomical observations. Recent observations of the same spectroscopic features in cold hydrogen clouds at redshifts z = 2.5947325 and z = 3.0248970 in the line of sight of two quasar light sources (Q 0405−443 and Q 0347−383) resulted in 76 reliably determined transition wavelengths of H2 lines at accuracies in the range 2 × 10−7 to 1 × 10−6. Those observations were performed with the Ultraviolet and Visible Echelle Spectrograph at the Very Large Telescope of the European Southern Observatory at Paranal, Chile. A third ingredient in the analysis is the calculation of an improved set of sensitivity coefficients Ki, a parameter associated with each spectral line, representing the dependence of the transition wavelength on a possible variation of the proton-to-electron mass ratio μ. The new model for calculation of the Ki sensitivity coefficients is based on a Dunham representation of ground state and excited state level energies, derived from the most accurate data available in literature for the ground electronic state and the presently determined level energies in the and C1Πu states. Moreover, the model includes adiabatic corrections to electronic energies as well as local perturbation effects between B and C levels. The full analysis and a tabulation of the resulting Ki coefficients is given in this paper. A statistical analysis of the data yields an indication for a variation of the proton-to-electron mass ratio of Δμ/μ = (2.45 ± 0.59) × 10−5 for a weighted fit and Δμ/μ = (1.99 ± 0.58) × 10−5 for an unweighted fit. This result, indicating the decrease of μ, has a statistical significance of 3.5σ. Mass-variations as discussed relate to inertial or kinematic masses, rather than gravitational masses. Separate treatment of the data gives a similar positive result for each of the quasars Q 0405−443 and Q 0347−383. The statistical analysis is further documented and possible systematic shifts underlying the data, with the possibility of mimicking a non-zero Δμ/μ value, are discussed. The observed decrease in μ corresponds to a rate of change of d lnμ/dt = −2 × 10−15 per year, if a linear variation with time is assumed. Experiments for detecting a possible variation of μ in the modern epoch via ultra-precision experiments on H2 quadrupole transitions are proposed.  相似文献   

7.
Ethylene adsorption was studied by use of DFT/B3LYP with basis set 6-31G(d,p) in Gaussian’03 software. It was found that ethylene has adsorbed molecularly on all clusters with π adsorption mode. Relative energy values were calculated to be −50.86 kcal/mol, −20.48 kcal/mol, −32.44 kcal/mol and −39.27 kcal/mol for Ni13 nanocluster, Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) surface cluster models, respectively. Ethylene adsorption energy is inversely proportional to Ni coordination number when Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) cluster models and Ni13 nanocluster are compared with each other.  相似文献   

8.
Equilibrium adsorption positions and diffusion pathways of the ions K+ and Cl as well as of the molecule KCl on the terrace of the (0 0 1) surface of KCl were determined by shell model calculations allowing relaxations of the crystal lattice in the vicinity of the adsorbed species. For the ions each one adsorption position was found, in which the ions are located above the hollow site at the center of a slightly distorted square formed by two cations and two anions of the uppermost surface layer of the KCl crystal. Adsorption energies of −1.52 eV for K+ and −1.61 eV for Cl were calculated. Jumps of the ions occur from these positions to adjacent hollow positions in the ±[1 0 0] and ±[0 1 0] directions with a jump distance of a0/2. The activation energies for the jumps result as 0.142 for K+ and 0.152 eV for Cl and the mean diffusion lengths as and . For the KCl molecule four distinct adsorption minima with energies between −0.932 and −0.825 eV were found. Because of the smaller lattice relaxation caused by the molecule the adsorption energies are considerably lower than for the single ions. In the position with the largest adsorption energy the ions of the admolecule are again placed above adjacent hollow sites. In two more adsorption positions only one ion is at the hollow site and the other one in a top position above an oppositely charged ion of the surface. In the fourth position with the smallest adsorption energy both ions are in top positions. Jumps between the different adsorption positions proceed by rotations of the molecule, in which one of its ions remains essentially attached to a local minimum position. The diffusion and desorption of a KCl molecule was studied by a Monte Carlo method, resulting in a mean diffusion length xs (nm) = 0.39 exp[0.84 (eV)/2kT], which agrees rather well with an experimental value of . Values for the mean stay time as well as for the surface diffusion coefficient are derived.  相似文献   

9.
Si(1 1 0) surfaces covered with small amounts of In deposit and then annealed at high temperature were investigated by RHEED, and two kinds of superstructures with A = 3a and B = −a + 4b, and A = 3a − 2b and B = −2a + 4b as primitive translational vectors are reported to form on the surfaces.  相似文献   

10.
Attenuated total reflectance (ATR) spectroscopy was used to investigate the adsorption of coumarin organosilane molecules onto a fused silica surface. The difference between the absorption spectra of the molecules on the surface and in solution was explained by the interaction of the adsorbed coumarin organosilane molecules with the hydroxyl groups on the fused silica surface. This interaction produces a perturbation of the π electron distribution and the electronic transitions of the coumarin chromophore of the organosilane molecules adsorbed on the surface. From the kinetics adsorption curves, the calculated enthalpy values of 74.8 ± 5.2 kJ mol−1 and free energy of −38.22 ± 0.70 kJ mol−1 at 23 °C indicates a chemisorption process. The high sensitivity of ATR spectroscopy allows the detection of a monolayer formed by a 10 nM concentration of coumarin organosilane molecules, which covers more than half of the maximum surface coverage at 60 °C.  相似文献   

11.
Adsorption (at a low temperature) of nitrogen on the protonic zeolite H-FER results in hydrogen bonding of the adsorbed N2 molecules with the zeolite Si(OH)Al Brønsted acid groups. This hydrogen bonding interaction leads to activation, in the IR, of the fundamental NN stretching mode, which appears at 2331 cm−1. From the infrared spectra taken over a temperature range, while simultaneously recording integrated IR absorbance, temperature and nitrogen equilibrium pressure, the thermodynamics of the adsorption process was studied. The standard adsorption enthalpy and entropy resulted to be ΔH° = −20(±1) kJ mol−1 and ΔS° = −131(±10) J mol−1 K−1, respectively.  相似文献   

12.
M.D. Ganji 《Physics letters. A》2008,372(18):3277-3282
The adsorption of CO2 on the single-walled tungsten carbide nanotubes has been investigated employing density functional theory method. The center of a hexagon of tungsten and carbon atoms in sites on tungsten carbide nanotube surfaces is the most stable adsorption site for CO2 molecule, with a binding energy of −1.68 eV (−38.72 kcal/mol) and a WO binding distance of 1.95 Å. Furthermore, the adsorption of CO2 on the single-walled carbon nanotubes has been investigated. Our first-principles calculations predict that the CO2 adsorptive capacity of tungsten carbide nanotubes is about quadruple that of carbon nanotubes. This might have potential for greenhouse gas detection and bioremediation.  相似文献   

13.
The rutile TiO2(1 1 0) surface is a highly anisotropic surface exhibiting “channels” delimited by oxygen rows. In previous experimental and theoretical DFT works we could identify the molybdenum adsorption sites. They are located inside the channels. Moreover, experimental studies have shown that during subsequent annealing after deposition, special molybdenum nano structures can be formed, especially two monolayer high pyramidal chains of atoms.In order to better understand the dynamics of nano structure formation, we present a kinetic Monte Carlo study on diffusion and adsorption of molybdenum atoms on a TiO2(1 1 0) surface. A quasi one-dimensional lattice gas model has been used which describes the possible adsorption sites of a Mo atom in a single channel of the surface. The atomic positions of a 1.5 monolayer thick Mo film formed of pyramidal chains define the lattice sites of the model. Thereby the formation of three-dimensional clusters could be studied. Here we have studied the cluster formation as a function of parameters that can be controlled in a growth experiment by physical vapor deposition: deposition and annealing temperature, flux and total amount of deposited Mo. Good qualitative agreement with recent experiments is obtained.  相似文献   

14.
Water molecule adsorption properties at the surface of InVO4 have been investigated using an ab initio molecular dynamics approach. It was found that the water molecules were adsorbed dissociatively to the three-fold oxygen coordinated V sites on the (0 0 1) surface. The dissociative adsorption energy was estimated to be 0.8-0.9 eV per molecule. The equilibrium distance between V and O of the hydroxyl -OH was almost the same as the V-O distance of tetrahedra VO4 in the InVO4 bulk crystal (1.7-1.8 Å).  相似文献   

15.
The persistence of Bacillus thuringiensis (Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L−1. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy () values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy () showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.  相似文献   

16.
Magnetite particles were prepared by co-precipitation, then sodium oleic (SO) and sodium dodecyl benzene sulfonate (SDBS) were applied as inner and outer surfactants, respectively. IR and TG were used to study the surface adsorption of SO and SDBS on magnetite particles. The experimental results demonstrated that SO molecules were linked to the magnetite particles through chemical bond and SDBS coated on the surface of magnetite particles covered with SO by means of Van der Waals attraction. Furthermore, based on the adsorption isotherms of surfactants on the magnetite particles and the dependence of Zeta potential of particles on the surfactants concentrations, the adsorption mechanisms of these two surfactants on the magnetite particles were studied. The isotherm adsorption model for SO on magnetite particles showed excellent correlation to Langmuir type and the adsorption equation was (25 °C), while that for SDBS on magnetite particles coated with SO showed excellent consistence with Freundlich type and the adsorption equation was Γ = 0.32c0.475 (25 °C). In addition, the results demonstrated that both SO and SDBS formed monolayer adsorption on the surface of magnetite particles.  相似文献   

17.
These studies are focused on understanding the role played by a solvent in chemical and electronic processes occurred in the course of semiconductor surface passivation at semiconductor/electrolyte interface. It is shown that the chemical reactivity of the ionic adsorbate at a semiconductor/electrolyte interface can be changed considerably through interaction with solvent molecules. The reactivity of anions depends essentially on the solvating solvent: hydrated ions could be either slightly electrophilic or slightly nucleophilic, whereas the ions solvated by alcohol molecules are always strongly nucleophilic. Mechanism of interaction of such solvated ions with the semiconductor surface atoms depends on the solvent, as is demonstrated by the example of processes occurred at GaAs(1 0 0)/sulfide solution interfaces. It is found that on adsorption of HS ions from different solvents the AsS bonds with solvent-dependent ionic character are formed on a GaAs(1 0 0) surface. The surface obtained in such a way possesses different ionization energy and exhibit different electronic properties dependent on the solvent.  相似文献   

18.
The adsorption of ethylene on Cu12Pt2 clusters has been studied within the density functional theory (DFT) approach to understand the high ethylene selectivity of Cu-rich Pt-Cu catalyst particles in the reaction of hydrogen-assisted 1,2-dichloroethane dechlorination. The structural parameters for Cu12Pt2 clusters with D4h, D2d, and C3v symmetry have been calculated. The relative stability of the isomeric Cu12Pt2 clusters follows the order: C3v > D2d > D4h. Each isomer has an active site for ethylene adsorption that consists of a single Pt atom surrounded by Cu atoms. The interaction of ethylene with the active site yields a π-C2H4 adsorption complex. The strongest π-C2H4 complex forms with the cluster of C3v symmetry; the bonding energy, ΔEπ(C2H4), is −15.6 kcal mol−1. The bonding energies for the π-C2H4 complex with Cu14 and Pt14 clusters are −6.5 and −18.8 kcal mol−1, respectively.The addition of Pt to Cu modifies the valence spd-band of the cluster as compared to a Cu14 cluster. The DOS near the Fermi level increases when C2H4 adsorbs on the Cu12Pt2 cluster. As well, the center of the d-band shifts toward lower binding energies. Ethylene adsorption also induces a number of states below the d-band. These states correspond to those of gas-phase C2H4.The vibrational frequencies of C2H4 adsorbed on the clusters of D4h and C3v symmetry have been calculated. The phonon vibrations occur below 250 cm−1. The intense bands around 200 cm−1 are attributed to stretching vibrations of the Pt-Cu bonds normal to the cluster surface. The stretching vibrations of the Pt-C bonds depend on the local structure of the active site: νs(Pt-C) = 268 cm−1 and νas(Pt-C) = 357 cm−1 for the cluster of the D4h symmetry; νs(Pt-C) = 335 cm−1 and νas(Pt-C) = 397 cm−1 for the cluster of the C3v symmetry. Bands in the range of 800-3100 cm−1 are attributed to vibrations of the adsorbed C2H4 molecule. The signature frequencies of the π-C2H4 adsorption complex are the δs(CH2) deformation vibration at ∼1200 cm−1 and the ν(C-C) stretching vibration at ∼1500 cm−1. These vibration are absent for di-σ-C2H4 adsorption complexes.  相似文献   

19.
Carbonation, as a reaction of the curing process of both, cement and lime binders, modifies the microstructure. Several microstructure properties, namely porosity, pore size distribution, surface fractal dimension, and specific surface area have been investigated in this study to describe the effect of carbonation on microstructure. Both carbonated and non-carbonated pastes of lime and blended pastes of lime and cement having varying water/binder (W/B) ratios are studied. Results show that carbonation decreases the porosity, but not with the same intensity in all pore size ranges. The highest modification is between 0.03 μm and 0.01 μm in lime pastes and between 0.2 μm and 0.02 μm in 50% lime pastes, while in 80% lime pastes the modification is very small. It is also observed that carbonation is a function of the binder composition but not of the W/B ratio. Moreover, surface fractal dimension decreases during the carbonation process, while the specific surface area varies depending of the binder composition.  相似文献   

20.
In this work we have studied the stabilty, electronic and magnetic properties of Pd adatoms and dimers adsorbed on graphene system using first-principles calculations. The adsorption energies for Pd adatom and its dimer have been found to range from −0.986 to −1.135 eV and −0.165 to −1.101 eV, respectively, which signify stable configuration and future utilization of this system in catalysis. A shift but no separation of π and π? bands at the Dirac point has been observed in case of Pd dimer adsorption in perpendicular configuration, which can be accounted for the breaking of symmetry of the graphene structure due to adsorption. 64-68% spin polarization P(EF) and 1.944-1.990 μB magnetic moment have been observed for Pd dimers adsorbed on graphene in perpendicular configuration for different sites. The unequal values of partial density of states for 4d and 5s orbitals of Pd dimers at Fermi level have been found to be responsible for the generation of high spin polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号