首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ga and N co-doped p-type ZnO thin films were epitaxially grown on sapphire substrate using magnetron sputtering technique. The process of synthesized Ga and N co-doped ZnO films was performed in ambient gas of N2O. Hall measurement shows a significant improvement of p-type characteristics with rapid thermal annealing (RTA) process in N2 gas flow, where more N acceptors are activated. The film rapid thermal annealed at 900 °C in N2 ambient revealed the highest carrier concentration of 9.36 × 1019 cm−3 and lowest resistivity of 1.39 × 10−1 Ω cm. In room and low temperature photoluminescence measurements of the as grown and RTA treated film, donor acceptor pair emission and exciton bound to acceptor recombination at 3.25 and 3.357 eV, respectively, were observed.  相似文献   

2.
J.C. Fan 《Applied Surface Science》2008,254(20):6358-6361
p-Type ZnO:As films with a hole concentration of 1016-1017 cm−3 and a mobility of 1.32-6.08 cm2/V s have been deposited on SiO2/Si substrates by magnetron sputtering. XRD, SEM, Hall measurements are used to investigate the structural and electrical properties of the films. A p-n homojunction comprising an undoped ZnO layer and a ZnO:As layer exhibits a typical rectifying behavior. Our study demonstrates a simple method to fabricate reproducible p-type ZnO film on the SiO2/Si substrate for the development of ZnO-based optoelectronic devices on Si-based substrates.  相似文献   

3.
Al-N-codoped ZnO films were fabricated by RF magnetron sputtering in the ambient of N2 and O2 on silicon (1 0 0) and homo-buffer layer, subsequently, annealed in O2 at low pressure. X-ray diffraction (XRD) spectra show that as-grown and 600 °C annealed films grown by codoping method are prolonged along crystal c-axis. However, they are not prolonged in (0 0 1) plane vertical to c-axis. The films annealed at 800 °C are not prolonged in any directions. Codoping makes ZnO films unidirectional variation. X-ray photoelectron spectroscopy (XPS) shows that Al content hardly varies and N escapes with increasing annealing temperature from 600 °C to 800 °C.  相似文献   

4.
ZnO and Al-doped ZnO(ZAO) thin films have been prepared on glass substrates by direct current (dc) magnetron sputtering from 99.99% pure Zn metallic and ZnO:3 wt%Al2O3 ceramic targets, the effects of substrate temperature on the crystallization behavior and optical properties of the films have been studied. It shows that the surface morphologies of ZAO films exhibit difference from that of ZnO films, while their preferential crystalline growth orientation revealed by X-ray diffraction remains always the (0 0 2). The optical transmittance and photoluminescence (PL) spectra of both ZnO and ZAO films are obviously influenced by the substrate temperature. All films exhibit a transmittance higher than 86% in the visible region, while the optical transmittance of ZAO films is slightly smaller than that of ZnO films. More significantly, Al-doping leads to a larger optical band gap (Eg) of the films. It is found from the PL measurement that near-band-edge (NBE) emission and deep-level (DL) emission are observed in pure ZnO thin films. However, when Al was doped into thin films, the DL emission of the thin films is depressed. As the substrate temperature increases, the peak of NBE emission has a blueshift to region of higher photon energy, which shows a trend similar to the Eg in optical transmittance measurement.  相似文献   

5.
Temperature-dependent photoluminescence (PL) from two multi-quantum well (MQW) structures with different barrier widths has been systematically investigated. The PL band in the well layers is dominated by localized excitons (LE), D0X, and D0X-1LO. As the temperature increases, luminescence from the excitons localized in the well layers shows an ‘S’-shaped shift in the thin barrier MQW whereas a monotonic redshift is observed from the thick barrier MQW. Quenching of well-related emission is associated with delocalization of the excitons in the potential minima induced by interface fluctuations or alloy disorder. The activation energies correlated with depths of the local potential are deduced to be 7 and 17 meV for the thick and thin barrier MQWs, respectively.  相似文献   

6.
The effect of bromine methanol (BM) etching and NH4F/H2O2 passivation on the Schottky barrier height between Au contact and semi-insulated (SI) p-Cd1−xZnxTe (x ≈ 0.09-0.18) was studied through current-voltage (I-V) and capacitance-voltage (C-V) measurements. Near-infrared (NIR) spectroscopy technique was utilized to determine the Zn concentration. X-ray photoelectron spectroscopy (XPS) for surface composition analysis showed that BM etched sample surface left a Te0-rich layer, however, which was oxidized to TeO2 and the surface [Te]/([Cd] + [Zn]) ratio restored near-stoichiometry after NH4F/H2O2 passivation. According to I-V measurement, barrier height was 0.80 ± 0.02-0.85 ± 0.02 eV for Au/p-Cd1−xZnxTe with BM etching, however, it increased to 0.89 ± 0.02-0.93 ± 0.02 eV with NH4F/H2O2 passivation. Correspondingly, it was about 1.34 ± 0.02-1.43 ± 0.02 eV and 1.41 ± 0.02-1.51 ± 0.02 eV by C-V method.  相似文献   

7.
Transparent conducting zinc oxide thin films were prepared by spray pyrolytic decomposition of zinc acetate onto glass substrates with different thickness. The crystallographic structure of the films was studied by X-ray diffraction (XRD). XRD measurement showed that the films were crystallized in the wurtzite phase type. The grain size, lattice constants and strain in films were calculated. The grain size increases with thickness. The studies on the optical properties show that the direct band gap value increases from 3.15 to 3.24 eV when the thickness varies from 600 to 2350 nm. The temperature dependence of the electrical conductivity during the heat treatment was studied. It was observed that heat treatment improve the electrical conductivity of the ZnO thin films. The conductivity was found to increase with film thickness.  相似文献   

8.
Polycrystalline and highly transparent CdS:In thin films were produced by the spray pyrolysis (SP) technique at different substrate temperatures ranging from 350 to 490 °C on glass substrates. The effect of the substrate temperature on the photovoltaic properties of the films was investigated by studying the transmittance measurements, X-ray diffraction (XRD) patterns, scanning electron microscope (SEM) observations and the I-V plots. The transmittance measurements were used to estimate the band gap energy by the linear fit of (αhν)2 versus . The band gap energy was found to be slightly increasing with the substrate temperature. XRD diffractograms show that a phase transition from the cubic to the hexagonal phase occurs by increasing the substrate temperature, beside more orientation of crystal growth. Also they show that complex cadmium compounds are still present till Ts ≈ 460 °C after which they practically disappear. From the linear I-V plots the resistivity was estimated and found to be strongly decreasing with the substrate temperature.  相似文献   

9.
Zinc oxide (ZnO) nanocrystals doped with different groups of impurities, e.g., Li, Na, Cu, Pr and Mg synthesized by solid-state reaction method under similar conditions exhibit different morphology. XRD showed monophasic wurtzite structure but change in lattice parameters and Zn-O bond length indicates incorporation of dopant ion in ZnO lattice. The morphology of ZnO nanocrystals exhibited striking dependence on type of dopant ion with the shape changing from nanorods, spherical to petal like particles. Photoluminescence (PL) shows pronounced UV emission and negligible visible emission for Li, Na and Cu doped ZnO nanocrystals with peak positions coinciding with that of undoped ZnO. Whereas signature emission of Pr3+ ion as well as broad visible emission from Mg doped ZnO revealed the role of intra gap metastable states formed by the dopant ion in the emission process.  相似文献   

10.
The rectifying junction characteristics of the organic compound pyronine-B (PYR-B) film on a p-type Si substrate have been studied. The PYR-B has been evaporated onto the top of p-Si surface. The barrier height and ideality factor values of 0.67 ± 0.02 eV and 2.02 ± 0.03 for this structure have been obtained from the forward bias current-voltage (I-V) characteristics. The energy distribution of the interface states and their relaxation time have been determined from the forward bias capacitance-frequency and conductance-frequency characteristics in the energy range of ((0.42 ± 0.02) − Ev)-((0.66 ± 0.02) − Ev) eV. The interface state density values ranges from (4.21 ± 0.14) × 1013 to (3.82 ± 0.24) × 1013 cm−2 eV−1. Furthermore, the relaxation time ranges from (1.65 ± 0.23) × 10−5 to (8.12 ± 0.21) × 10−4 s and shows an exponential rise with bias from the top of the valance band towards the midgap.  相似文献   

11.
In this study, p-type ZnO films with excellent electrical properties were prepared by ultrasonic spray pyrolysis (USP) combining with a N-Al codoping technique. The influence of the substrate temperature and annealing temperature on electrical properties of ZnO films was investigated. The growth and doping process of ZnO films was explored by thermogravimetry, differential scanning calorimetry and mass spectrum (TG-DSC-MS) measurements. It is suggested that the variation of electrical properties of ZnO films with the substrate temperature and annealing temperature results from the removal of H element out of the films.  相似文献   

12.
Au/GaN/n-GaAs structure has been fabricated by the electrochemically anodic nitridation method for providing an evidence of achievement of stable electronic passivation of n-doped GaAs surface. The change of the electronic properties of the GaAs surface induced by the nitridation process has been studied by means of current-voltage (I-V) characterizations on Schottky barrier diodes (SBDs) shaped on gallium nitride/gallium arsenide structure. Au/GaN/n-GaAs Schottky diode that showed rectifying behavior with an ideality factor value of 2.06 and barrier height value of 0.73 eV obeys a metal-interfacial layer-semiconductor (MIS) configuration rather than an ideal Schottky diode due to the existence of GaN at the Au/GaAs interfacial layer. The formation of the GaN interfacial layer for the stable passivation of gallium arsenide surface is investigated through calculation of the interface state density Nss with and without taking into account the series resistance Rs. While the interface state density calculated without taking into account Rs has increased exponentially with bias from 2.2×1012 cm−2 eV−1 in (Ec−0.48) eV to 3.85×1012 cm−2 eV−1 in (Ec−0.32) eV of n-GaAs, the Nss obtained taking into account the series resistance has remained constant with a value of 2.2×1012 cm−2 eV−1 in the same interval. This has been attributed to the passivation of the n-doped GaAs surface with the formation of the GaN interfacial layer.  相似文献   

13.
Pt Schottky diode gas sensors for CO are fabricated using A1GaN/GaN high electron mobility transistor(HEMTs)structure. The diodes show a remarkable sensor signal (3 mA, in N2, 2mA in air ambient) biased 2 V after 1% CO is introduced at 50℃. The Schottky barrier heights decrease for 36meV and 27meV in the two cases respectively. The devices exhibit a slow recovery characteristic in air ambient but almost none in the background of pure N2, which reveals that oxygen molecules could accelerate the desorption of CO and offer restrictions to CO detection.  相似文献   

14.
Hydrogen Sensors Based on AlGaN/AlN/GaN Schottky Diodes   总被引:2,自引:0,他引:2       下载免费PDF全文
Pt/AlGaN/AlN/GaN Schottky diodes are fabricated and characterized for hydrogen sensing. The Pt Schottky contact and the Ti/Al/Ni/Au ohmic contact are formed by evaporation. Both the forward and reverse currents of the device increase greatly when exposed to hydrogen gas. A shift of 0.3 V at 300 K is obtained at a fixed forward current after switching from N2 to 10%H2+N2. The sensor responses under different concentrations from 50ppm H2 to 10%H2+N2 at 373K are investigated. Time dependences of the device forward current at 0.5 V forward bias in N2 and air atmosphere at 300 and 373K are compared. Oxygen in air azcelerates the desorption of the hydrogen and the recovery of the sensor. Finally, the decrease of the Schottky barrier height and sensitivity Of the sensor are calculated.  相似文献   

15.
Infrared photoluminescence spectra (in the range 0.9-1.4 eV) of the as-deposited CdS:In thin films prepared by the spray pyrolysis technique were recorded at different laser powers and different film temperatures in the range 24-130 K. The spectra show an infrared band centred at 1.06 eV, which have a structure and asymmetry. The structure might be attributed to active defect states which are produced through the growth of the film and might be partially due to coupling to longitudinal phonon. Gaussian peaks were used to deconvolute the spectrum by using nonlinear square fit. The Gaussian peaks used in the fit are expected to fit the spectra taken at different laser powers and different temperatures. These results are discussed in view of the importance of CdS as a window layer for photovoltaic heterojunction solar cells.  相似文献   

16.
We present a study of the electronic properties of the interface between the well-established molecular organic semiconductor copper phthalocyanine (CuPc) and the fullerite C60 using photoelectron spectroscopy and the Kelvin-probe (KP) method. Upon deposition of CuPc on C60, we found interfacial shifts of the vacuum level indicating the formation of a dipole layer, while band bending is found to be negligible. The interface dipole of 0.5 eV measured with KP is close to the difference between the work functions of bulk CuPc and C60. No evidence for a chemical interaction at the interface is concluded from the absence of additional features in the core-level spectra at the earliest stages of deposition. The energy-level alignment diagram at the CuPc/C60 interface is derived.  相似文献   

17.
N 掺杂ZnO薄膜的接触特性   总被引:1,自引:1,他引:0  
氧化锌(ZnO)是一种直接带隙半导体材料,室温下带隙为3.37eV,激子束缚能为60meV。ZnO因其优越的光电特性在高亮度蓝紫光发光器件、紫外探测器件和短波长激子型激光器等方面具有广阔的应用前景。而要实现大功率的光电器件,稳定可靠的欧姆接触是必需的。研究了氮气氛条件下,不同温度快速退火对氮掺杂ZnO样品的电学性质以及Ni/Au与其接触特性的影响。原生样品表现为弱的肖特基接触,适当温度退火后,由肖特基转成了欧姆接触,650℃退火后得到最小比接触电阻率8×10-4Ω·cm2。霍尔测量表明550℃快速退火后,样品的导电类型由p型转变成了n型。采用AES和GXRD分别研究了不同退火温度下Au、Ni、Zn、O的深度分布变化及退火后所生成的合金相。实验结果表明,退火所导致的薄膜电学性质的变化以及界面态和表面态的增加是接触特性变化的原因。  相似文献   

18.
研究了Au,In,Ni/Au三种不同金属膜与N掺杂p型ZnO的接触特性,发现Ni/Au双层膜更适合作为其欧姆电极材料,并比较了不同气氛和不同温度退火对Ni/Au电极的影响.发现在O2中退火电极性能发生蜕变,而在N2中退火性能得到改善.指出即使在N2中退火,退火温度的选择也是至关重要的,本实验在400℃,氮气气氛下退火150s,得到了较好的欧姆接触特性.  相似文献   

19.
Tin-doped indium oxide (ITO) films with 200 nm thickness were deposited on glass substrates by DC magnetron sputtering at room temperature. And they were annealed by rapid thermal annealing (RTA) method in vacuum ambient at different temperature for 60 s. The effect of annealing temperature on the structural, electrical and optical properties of ITO films was investigated. As the RTA temperature increases, the resistivity of ITO films decreases dramatically, and the transmittance in the visible region increases obviously. The ITO film annealed at 600 °C by RTA in vacuum shows a resistivity of 1.6 × 10−4 Ω cm and a transmittance of 92%.  相似文献   

20.
The current-voltage (I-V) characteristics of Al/Rhodamine-101/p-Si/Al contacts have been measured at temperatures ranging from 280 to 400 K at 20 K intervals. A barrier height (BH) value of 0.817 eV for the Al/Rh101/p-Si/Al contact was obtained at the room temperature that is significantly larger than the value of 0.58 eV of the conventional Al/p-Si Schottky diode. While the barrier height Φb0 decreases the ideality factors (n) become larger with lowering temperature. The high values of n depending on the sample temperature may be ascribed to decrease of the exponentially increase rate in current due to space-charge injection into Rh101 thin film at higher voltage. Therefore, at all temperatures, it has been seen that the I-V characteristics show three different regions, the ohmic behavior at low voltages, and the space charge limited current with an exponential distribution of traps at high voltages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号