首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-crystalline, pyramidal zinc oxide nanorods have been synthesized in a large quantity on p-Si substrate via catalyst-free thermal chemical vapor deposition at low temperature. SEM investigations showed that the nanorods were vertically aligned on the substrate, with diameters ranging from 60 to 80 nm and lengths about 1.5 μm. A self-catalysis VLS growth mechanism was proposed for the formation of the ZnO nanorods. The field emission properties of the ZnO nanopyramid arrays were investigated. A turn-on field about 3.8 V/μm was obtained at a current density of 10 μA/cm2, and the field emission data was analyzed by applying the Fowler-Nordheim theory. The stability of emission current density under a high voltage was also tested, indicating that the ZnO nanostructures are promising for an application such as field emission sources.  相似文献   

2.
ZnO nanorods and nanodisks were formed on indium-tin-oxide-coated glass substrates by using an electrochemical deposition method. Scanning electron microscopy images showed that the ZnO nanorods were transformed into nanodisks with increasing Zn(NO3)2 concentration. X-ray diffraction patterns showed that the ZnO nanostructures had wurzite structures. The full widths at half maxima of the near band-edge emission peak of photoluminescence spectra at 300 K for ZnO nanorods were small, indicative of the high quality of the nanorods. These results indicate that the structural and the optical properties of ZnO nanostructures vary by changing Zn(NO3)2 concentration.  相似文献   

3.
The effects of Si substrate orientation and surface treatment on the morphology and density of Zinc oxide (ZnO) nanorods were investigated. The size and density of ZnO nanorods were influenced by Si substrate orientation and surface preparation. ZnO nanorods synthesized on the ideally H-terminated Si(1 1 1) prepared with an NH4F solution resulted in the biggest size and the lowest density. It is suggested that the smoother surface of the Si substrate and lattice shape match with a larger atomic distance result in the increase of the ZnO seedlayer's grain size, which in turn enhances the size of ZnO nanorods grown on it. The optical properties of the ZnO nanorods were affected by their size and crystallinity. The smallest ZnO nanorods with a preferential c-axis orientation synthesized on the HF-treated Si(1 1 1) surface showed the highest intensity ratio of UV to visible emission, and the biggest ZnO nanorods synthesized on the N2-sparged NH4F-treated Si(1 1 1) surface showed the lowest intensity ratio of UV to visible emission. Therefore, it can be concluded that Si substrate orientation and surface preparation significantly affect the optical properties of ZnO nanorods.  相似文献   

4.
Pyramidal ZnO nanorods with hexagonal structure having c-axis preferred orientation are grown over large area silica substrates by a simple aqueous solution growth technique. The as-grown nanorods were studied using XRD, SEM and UV-vis photoluminescence (PL) spectroscopy for their structural, morphological and optical properties, respectively. Further, the samples have also been annealed under different atmospheric conditions (air, O2, N2 and Zn) to study the defect formation in nanorods. The PL spectra of the as-grown nanorods show narrow-band excitonic emission at 3.03 eV and a broad-band deep-level emission (DLE) related to the defect centers at 2.24 eV. After some mild air annealing at 200 °C, fine structures with peaks having energy separation of ∼100 meV were observed in the DLE band and the same have been attributed to the longitudinal optical (LO) phonon-assisted transitions. However, the annealing of the samples under mild reducing atmospheres of N2 or zinc at 550 °C resulted in significant modifications in the DLE band wherein high intensity green emission with two closely spaced peaks with maxima at 2.5 and 2.7 eV were observed which have been attributed to the VO and Zni defect centers, respectively. The V-I characteristic of the ZnO:Zn nanorods shows enhancement in n-type conductivity compared to other samples. The studies thus suggest that the green emitting ZnO:Zn nanorods can be used as low voltage field emission display (FED) phosphors with nanometer scale resolution.  相似文献   

5.
L. Miao  Y. Ieda  Y. Hayashi  S.P. Lau  Y.G. Cao 《Surface science》2007,601(13):2660-2663
Three-dimensional (3-D) ZnO random-wall nanostructures and one-dimensional (1-D) ZnO nanorods were prepared on silicon substrates by a simple solid-vapour phase thermal sublimation technique. Optical pumped random lasing has been observed in the ZnO random-wall arrays with a threshold intensity of 0.38 MW/cm2 in the emission wavelength from 380 to 395 nm. The optical gain was attributed to the closed-loop scattering and light amplification of the ZnO random-wall. The experimental result suggests that the morphology of nanostructure is the key factor to effect random lasing.  相似文献   

6.
The undoped and Al-doped ZnO nanostructures were fabricated on the ITO substrates pre-coated with ZnO seed layers using the hydrothermal method. The undoped well-aligned ZnO nanorods were synthesized. When introducing the Al dopant, ZnO shows various morphologies. The morphology of ZnO changes from aligned nanorods, tilted nanorods, nanotubes/nanorods to the nanosheets when the Al doping concentrations increase. The ZnO nanostructures were characterized by X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence and Raman technology. The Al doping concentrations play an important role on the morphology and optical properties of ZnO nanostructures. The possible growth mechanism of the ZnO nanostructures was discussed.  相似文献   

7.
ZnO nanorod arrays were synthesized by chemical-liquid deposition techniques on MgxZn1−xO (x = 0, 0.07 and 0.15) buffer layers. It is found that varying the Mg concentration could control the diameter, vertical alignment, crystallization, and density of the ZnO nanorods. The X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) data show the ZnO nanorods prefer to grow in the (0 0 2) c-axis direction better with a larger Mg concentration. The photoluminescence (PL) spectra of ZnO nanorods exhibit that the ultraviolet (UV) emission becomes stronger and the defect emission becomes weaker by increasing the Mg concentration in MgxZn1−xO buffer layers.  相似文献   

8.
We report on the effects of glass substrate temperature on the crystal structure and morphology of tungsten (W)-doped ZnO nanostructures synthesized by pulsed-laser deposition. X-ray diffraction analysis data shows that the W-doped ZnO thin films exhibit a strongly preferred orientation along a c-axis (0 0 0 L) plane, while scanning electron and atomic force microscopes reveal that well-aligned W-doped ZnO nanorods with unique shape were directly and successfully synthesized at substrate temperature of 550 °C and 600 °C without any underlying catalyst or template. Possible growth mechanism of these nanorods is suggested and discussed.  相似文献   

9.
W-doped ZnO nanostructures were synthesized at substrate temperature of 600 °C by pulsed laser deposition (PLD), from different wt% of WO3 and ZnO mixed together. The resulting nanostructures have been characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and photoluminescence for structural, surface morphology and optical properties as function of W-doping. XRD results show that the films have preferred orientation along a c-axis (0 0 L) plane. We have observed nanorods on all samples, except that W-doped samples show perfectly aligned nanorods. The nanorods exhibit near-band-edge (NBE) ultraviolet (UV) and violet emissions with strong deep-level blue emissions and green emissions at room temperature.  相似文献   

10.
Brush-shaped ZnO particles were synthesized by controlling the growth time in the direct melt oxidation process of Al-Zn mixture in air at atmospheric pressure. Particles with two kinds of structures were formed. One was consisted of nanowires grown along [0 0 0 1] direction at the six corners and the center of (0 0 0 1) basal plane on hexagonal ZnO microrod. The other was constructed by nanobelts between the corner-nanowires as well as nanowires at the corners on ZnO microrod. The structural configuration that the nanowires and the nanobelts have a well coherent orientation alignment with the base microrod implies that the brush-shaped ZnO is single crystal. Room temperature PL spectrum of the brush-shaped ZnO particles displayed predominant green emission with a wavelength of 510 nm.  相似文献   

11.
Growth and properties of ZnO nanorod and nanonails by thermal evaporation   总被引:1,自引:0,他引:1  
ZnO nanorods and nanonails have been synthesized on silicon wafers by a three-step catalyst-free thermal evaporation method in oxygen atmosphere. All the samples were hexagonal phase ZnO with highly c-axis preferential orientation. Different morphologies of ZnO nanostructures, i.e. ZnO nanorods and two kinds of nanonails, were observed at various temperature regions. Photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscope were employed to elucidate the reason for the formation of such different rod-like structures. The analysis results demonstrated that the caps of nanonails possess a large number of oxygen vacancies, which may play a key role in determining the formation of nanonails and the high intensity of green emission.  相似文献   

12.
The study is dedicated to some aspects of the controlled heteroepitaxial growth of nanoscaled ZnO structures and an investigation of their general and dimension mediated properties. ZnO nanostructures were synthesized by optimized MOCVD process via two growth approaches: (i) catalyst free self-organized growth of ZnO on Si substrates and (ii) ZnO heteroepitaxy on p-type hexagonal 4H-SiC substrates. The SiC substrate was prepared by sublimation epitaxy and served as a template for the ZnO epitaxial growth. The epitaxial growth of n-ZnO on p-SiC resulted in a regular matrix of well-faceted hexagonally shaped ZnO single crystals. The achievement of ZnO integration with Si encompasses controlled growth of vertically oriented nanosized ZnO pillars. The grown structures were characterized by transmission electron microscopy and microphotoluminescence. Low concentration of native defects due to a stoichiometry balance, advanced optical emission, (excitonic type near-band-edge emission and negligible defect related luminescence) and continuous interfaces (epitaxial relationship ZnO[0 0 0 1]/SiC[0 0 0 1]) are evidenced. The ZnO nanopillars were further probed as field emitters: the grown structures exhibits advanced field emission properties, which are explained in term of dimensionality and spatial uniformity of the nanopillars. The present results contribute to understanding and resolving growth and device related issues of ZnO as a functional nanostructured material.  相似文献   

13.
Wurtzite zinc oxide (ZnO) nanochains have been synthesized through high-pressure pulsed laser deposition. The chain-like ZnO nanostructures were obtained from magnesium (Mg) doped ZnO targets, whereas vertically aligned nanorods were obtained from primitive ZnO targets. The Mg doping has influenced the morphological transition of ZnO nanostructures from nanorods to nanochains. The field emission scanning electron microscope images revealed the growth of beaded ZnO nanochains. The ZnO nanochains of different diameters 40 and 120 nm were obtained. The corresponding micro-Raman spectra showed strong E2H mode of ZnO, which confirmed the good crystallinity of the nanochains. In addition to near band edge emission at 3.28 eV, ZnO nanochains show broad deep level emission at 2.42 eV than that of ZnO nanorods.  相似文献   

14.
Flower-like ZnO nanorods have been synthesized by heating a mixture of ZnO/graphite powders using the thermal evaporation and vapor transport on Si (1 0 0) substrates without any catalyst. The structures, morphologies and optical properties of the products were characterized in detail by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman spectroscopy. The synthesized products consisted of large quantities of flower-like ZnO nanostructures in the form of uniform nanorods. The flower-like ZnO nanorods had high purity and well crystallized wurtzite structure, whose high crystalline quality was proved by Raman spectroscopy. The as-synthesized flower-like ZnO nanorods showed a strong ultraviolet emission at 386 nm and a weak and broad yellow-green emission in visible spectrum in its room temperature photoluminescence (PL) spectrum. In addition, the growth mechanism of the flower-like ZnO nanorods was discussed based on the reaction conditions.  相似文献   

15.
Single-crystalline zinc oxide (ZnO) nanorods with cuboid morphology have been prepared on the zinc-filled porous silicon substrate using a vapor phase transport method. Field-emission measurements showed that the turn-on field and threshold field of the cuboid ZnO nanorods film were about 3.2 and 8.2 V/μm respectively. From the emitter surface, a homogeneous emission image was observed with emission site density (ESD) of ∼104 cm−2. The better emission uniformity and the high ESD may be attributed to a large number of ZnO nanocrystallites as emitter on the surface of the nanorod end contributing to emission.  相似文献   

16.
Novel ZnO tetrapod and multipod nanostructures were successfully synthesized in bulk quantity through thermal evaporation method. The morphologies and structures of the ZnO nanostructures were characterized by scanning electron microscopy, X-ray diffraction and transmission electron microscopy. The results revealed that the ZnO nanostructures consisted of tetrapods and multipods with tower-like legs. The ZnO nanostructures were of high purity and were well crystallized with wurtzite structure. The preferred growth direction of legs was found to be the [0 0 0 1] direction. Possible growth mechanisms were proposed for the formation of the ZnO nanostructures. Room temperature photoluminescence (PL) spectra showed that the as-synthesized ZnO nanostructures had a strong green emission centered at 495 nm and a weak ultraviolet emission at 383 nm. Raman spectroscopy was also adopted to explore the structural quality of the ZnO nanostructures.  相似文献   

17.
The effects of various substrate conditions on the morphology, crystal structure and photoluminescence of ZnO nanostructures synthesized by nanoparticle-assisted pulsed-laser ablation deposition were investigated. It is concluded that the sapphire substrate with a 1 h anneal at 1000 °C is the most favorable to the vertical growth of ZnO nanostructures. SEM analysis indicates that the well-aligned diameter-modulated ZnO nanonails with unique shape were successfully synthesized on the annealed sapphire substrate. The as-synthesized ZnO nanostructures exhibit an ultraviolet emission at around 390 nm and the absent green emission under room temperature, indicating that there is a very low concentration of deep-level defects inside ZnO lattices. The novel ZnO nanostructures could offer novel opportunities for both fundamental research and technological applications.  相似文献   

18.
The ZnO nanowires have been synthesized using vapor-liquid-solid (VLS) process on Au catalyst thin film deposited on different substrates including Si(1 0 0), epi-Si(1 0 0), quartz and alumina. The influence of surface roughness of different substrates and two different environments (Ar + H2 and N2) on formation of ZnO nanostructures was investigated. According to AFM observations, the degree of surface roughness of the different substrates is an important factor to form Au islands for growing ZnO nanostructures (nanowires and nanobelts) with different diameters and lengths. Si substrate (without epi-taxy layer) was found that is the best substrate among Si (with epi-taxy layer), alumina and quartz, for the growth of ZnO nanowires with the uniformly small diameter. Scanning electron microscopy (SEM) reveals that different nanostructures including nanobelts, nanowires and microplates have been synthesized depending on types of substrates and gas flow. Observation by transmission electron microscopy (TEM) reveals that the nanostructures are grown by VLS mechanism. The field emission properties of ZnO nanowires grown on the Si(1 0 0) substrate, in various vacuum gaps, were characterized in a UHV chamber at room temperature. Field emission (FE) characterization shows that the turn-on field and the field enhancement factor (β) decrease and increases, respectively, when the vacuum gap (d) increase from 100 to 300 μm. The turn-on emission field and the enhancement factor of ZnO nanowires are found 10 V/μm and 1183 at the vacuum gap of 300 μm.  相似文献   

19.
Porous copper oxide microrods have been synthesized via calcining copper glycinate monohydrate microrod precursor which was prepared in mild conditions without any template or additive. Several techniques, such as X-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analyses, were used to characterize the structure and morphology of the products. Scanning electron microscopy (SEM) analyses show that the precursor consists of a large quantity of uniform rod-like micro/nanostructures with typical lengths in the range of 25–40 µm and diameters in the range of 0.1–0.35 µm. The microrod-like precursors transformed into porous microrod products after calcination at 450 °C in flow air for 2 h. The BET surface area of the porous CuO microrods was calculated to be 8.5 m² g−1. In addition, the obtained porous CuO microrods were used as catalysts to photodegrade rhodamine B (RhB), methyl orange, methylene blue, eosin B, and p-nitrophenol. Compared with commercial CuO powders, the as-prepared porous CuO microrods exhibit superior properties on photocatalytic decomposition of RhB due to their porous hierarchical structures.  相似文献   

20.
SnO2-coated ZnO nanorods on c-plane sapphire substrates were synthesized by pulsed laser deposition. The thickness of the polycrystalline SnO2 was ∼10 nm, as determined by high-resolution transmission electron microscopy, while the diameter of the ZnO nanorods was ∼30 nm. The sensitivity of the SnO2/ZnO structures to hydrogen was tested by depositing Ti/Au Ohmic contacts on a random array of the nanorods and measuring the current at fixed voltage. There was no response to 500 ppm H2 in N2 at room temperature, but we obtained a sensitivity of ∼70% at 400 °C. The SnO2/ZnO structures exhibit drift in their recovery characteristics and for sequential detection of hydrogen, as generally reported for SnO2 thin film sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号