首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To develop a model system containing regularly spaced misfit dislocations for studies of the radiation resistance of nanoscale defects, epitaxial thin films of Cr, Mo, and Cr(x)Mo(1-x) alloys were deposited on MgO(001) by molecular beam epitaxy. Film compositions were chosen to vary the lattice mismatch with MgO. The film structure was investigated by x-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS) and scanning transmission electron microscopy (STEM). Epitaxial films with reasonably high crystalline quality and abrupt interfaces were achieved at a relatively low deposition temperature, as confirmed by STEM. However, it was found by XRD and RBS in the channeling geometry that increasing the Mo content of the CrMo alloy films degraded the crystalline quality, despite the improved lattice match with MgO. XRD rocking curve data indicated that regions of different crystalline order may be present within the films with higher Mo content. This is tentatively ascribed to spinodal decomposition into Cr-rich and Mo-rich regions, as predicted by the Cr(x)Mo(1-x) phase diagram.  相似文献   

2.
Interaction between streptavidin and biotin on poly(amidoamine) (PAMAM) dendrimer-activated surfaces and on self-assembled monolayers (SAMs) was quantitatively studied by using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface protein density was systematically varied as a function of protein concentration and independently quantified using the ellipsometry technique. Principal component analysis (PCA) and principal component regression (PCR) were used to identify a correlation between the intensities of the secondary ion peaks and the surface protein densities. From the ToF-SIMS and ellipsometry results, a good linear correlation of protein density was found. Our study shows that surface protein densities are higher on dendrimer-activated surfaces than on SAMs surfaces due to the spherical property of the dendrimer, and that these surface protein densities can be easily quantified with high sensitivity in a label-free manner by ToF-SIMS.  相似文献   

3.
While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.  相似文献   

4.
Sleep disorder is associated with metabolic disturbances, which was related to oxidative stress and subsequently sodium overload. Since liver plays important roles in metabolic regulation, present study is aimed to determine whether hepatic sodium, together with oxidative stress, would significantly alter after total sleep deprivation (TSD). Sodium ion was investigated by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Parameter for oxidative stress was examined by heat shock protein-25 (HSP-25) immunohistochemistry. TOF-SIMS spectrum indicated that hepatic Na+/K+ ratio counting as 82.41 ± 9.5 was obtained in normal rats. Sodium ions were distributed in hepatocytes with several aggregations. However, following TSD, the intensity for Na+/K+ ratio was relatively increased (101.94 ± 6.9) and signals for sodium image were strongly expressed throughout hepatocytes without spatial localization. Quantitative analysis revealed that HSP-25 staining intensity is 1.78 ± 0.27 in TSD rats, which was significantly higher than that of normal ones (0.68 ± 0.15). HSP-25 augmentation suggests that hepatocytes suffer from oxidative stress following TSD. Concerning oxidative stress induced sodium overload would impair metabolic function; enhanced hepatic sodium expression after TSD may be a major cause of TSD relevant metabolic diseases.  相似文献   

5.
Conventional matrix-assisted laser desorption/ionization mass spectrometry is limited to analyses of higher molecular weight compounds due to high background noise generated by the matrix in the lower mass region. Surface-assisted laser desorption/ionization (SALDI) mass spectrometry is an alternative solution to this problem. Nanoparticles, structured silicon surfaces and carbon allotropes are commonly used as SALDI surfaces. Here, for the first time, we demonstrate the application of silicon nitride nanoparticles as a suitable medium for laser desorption/ionization of small drug molecules.  相似文献   

6.
Field emission gun (FEG) nanoprobe scanning electron transmission microscopy (STEM) techniques coupled with energy dispersive X-ray (EDX) and electron energy loss spectroscopy (EELS) are evaluated for the detection of the n-type dopant arsenic, in silicon semiconductor devices with nanometer-scale. Optimization of the experimental procedure, data extraction and the signal-to-noise ratio versus electron dose, show that arsenic detection below 0.1% should be possible. STEM EDX and EELS spectrum profiles have been quantified and compared with secondary ion mass spectrometry (SIMS) analyses which show a good agreement. In addition, the arsenic doping level found inside large and small epitaxial devices have been compared using STEM EDX-EELS profiling. The average doping level is found to be similar but variable interface segregation has been observed. Finally, STEM EDX arsenic mapping acquired in a BiCMOS transistor cross-section shows strong heterogeneities and segregation in the epitaxially grown emitter part.  相似文献   

7.
Dynamic electron polarisation (DEP) produced by the quenching of dye molecules in the triplet excited states by nitroxide radicals was investigated in aqueous solutions by pulsed electron paramagnetic resonance and transient absorption spectroscopy. An analysis of the measured quenching rate constants suggests that quenching is promoted by either exchange or charge-transfer mechanisms for a triplet dye and a doublet radical pair. An unusually large DEP on the radical was found generated in the nitroxide and Eosin Y or Rose Bengal systems in aqueous solutions. Quantitative analysis indicates that the DEP values in aqueous solutions range from ?40 to ?150 in the unit of thermal spin polarisation, which is in contrast to previously reported small DEP values of less than ?10 for organic triplet molecules in benzene solutions [22–27,29,31,32]. From the theoretical analysis of DEP, an origin of this large DEP was attributed to the notably slow diffusion motion of Eosin Y and Rose Bengal in water.  相似文献   

8.
Anodic oxidation was used to grow porous layers on titanium discs. Six different oxidation procedures were used producing six different surfaces. The implants were inserted in rat bone (tibia) for 7 days. After implant retrieval, mineralization (hydroxyapatite formation) on the implant surfaces was investigated using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Bone tissue around the implants was sectioned and stained. The amount of bone in close apposition to the implant was calculated. The porosity showed great variation between the surfaces. Hydroxyapatite was detected on all surfaces. A slight positive correlation between porosity and mineralization was found, although the most porous surface was not the best mineralized one. Bone had formed around all implants after 7 days. The bone-to-metal contact for the porous implants did not differ significantly from the non-porous control. Porosity is known to influence cellular events. The results indicate that porosity could have an initial, positive influence on bone integration of implants, by stimulating the mineralization process. The methods used were found to be suitable tools for investigation of initial healing around implants in bone.  相似文献   

9.
Germanium (Ge) nanodots of about 7 nm size and 2 × 1012 cm−2 density were formed on slightly oxidized silicon surfaces. The spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM) revealed clearly the size, aspect ratio and interface structures among the nanodots, oxide layers and silicon substrates. In particular, a Ge-rich thin layer underneath SiO2 layers was found for the first time in these kinds of samples. The elemental distribution through the interface was analyzed by EELS and EDX in the Cs-corrected STEM. The high-resolution Cs-corrected annular dark field (ADF)-STEM image shows clearly the existence of a Ge-rich crystalline layer and its geometry against the oxide layer from the Z-contrast image. A new growth model of the Ge nanodots on slightly oxidized silicon surfaces was proposed.  相似文献   

10.
Injection molded specimens of a poly(4-methylpentene) (TPX) were annealed at temperatures between 140 and 220°C for times up to 500 min in air, and the annealed TPX specimens were characterized by the differential scanning calorimeter, UV–visible spectrometry, FT-IR, and X-ray diffraction. The annealing of the TPX specimens at 140–180°C for 50 min showed little effect on their thermal properties. However, the thermal properties were significantly affected by annealing at 200–220°C, and the change was dependent on the annealing time. Besides the annealing effect, the thermal properties were also affected by oxidative degradation. Severe oxidative degradation can destroy the crystalline structure and thus decreases the crystallinity. The oxidative degradation phenomenon of the TPX specimens during annealing can be simulated by isothermal scanning of the weight loss in air by thermal gravimetric analysis.  相似文献   

11.
The structure, as well as the phase and elemental compositions, of tantalum diboride-based nanostructured films deposited by rf magnetron sputtering under various conditions are studied by X-ray diffraction, electron microscopy, and secondary ion mass spectrometry. The physicomechanical properties of the films (hardness, as well as elastic and plastic properties) are determined. The maximum hardness and elastic modulus of the synthesized films are 42 are 240 GPa, respectively. The grain size is found to influence the physicomechanical and electrical properties of the films.  相似文献   

12.
Ali Eftekhari   《Applied Surface Science》2003,220(1-4):343-348
Different Ni-based alloys with various compositions were prepared by varying the amounts of beryllium. Effect of the amount of beryllium added to the alloy on its corrosion in an electrolyte solution of artificial saliva was investigated. Fractal dimension was used as a quantitative factor for surface analysis of the alloys before and after storage in the artificial salvia. The fractal dimensions of the electrode surfaces were determined by means of the most reliable method in this context viz. time dependency of the diffusion-limited current for a system involving “diffusion towards electrode surface”. The results showed that increase of the beryllium amount in the alloy composition significantly increases the alloy corrosion. It is accompanied by increase of the fractal dimension and roughness of the electrode surface, whereas a smooth and shiny surface is required for dentures. From the methodology point of view, the approach utilized for fractal analysis of the alloy surfaces (Au-masking of metallic surfaces) is a novel and efficient method for study of denture surfaces. Generally, this approach is of interest for corrosion studies of different metals and alloys, particularly where changes in surface structure have a significant importance.  相似文献   

13.
The controllability of cell manipulation using image dielectrophoresis (DEP) was characterized regarding DEP affinity test of cells, effective DEP radius, threshold voltage and parallel manipulation. The reconfigurable electrodes for DEP were achieved using an optically addressable projection array of 800 by 600. Each optical pixels projected on the chips were measured to be 25 μm by 25 μm. Individual pixels were controlled through a computer using a mouse cursor or pre-programmed flashes as projection patterns over a period of time. Based on the result of the DEP affinity test, effective DEP radius and threshold voltages, the parallel manipulation of cells without interfering each other was demonstrated.  相似文献   

14.
Cells continuously produce reactive oxidative species that can modify all cellular components. In proteins, for example, cysteine, methionine, tryptophan (Trp), and tyrosine residues are particularly prone to oxidation. Here, we report two new approaches to distinguish two isomeric oxidation products of Trp residues, i.e. 5-hydroxytryptophan (5-HTP) and oxindolylalanine (Oia) residues, in peptides. First, 2-nitrobenzenesulfenyl chloride, known to derivatize Trp residues in position 2 of the indole ring, was used to label 5-HTP residues. The mass shift of 152.98 m/z units allowed identifying 5-HTP- besides Trp-containing peptides by mass spectrometry, whereas Oia residues were not labeled. Second, fragmentation of the Oia- and 5-HTP-derived immonium ions at m/z 175.08 produced ions characteristic for each residue that allowed their identification even in the presence of y(1) ions at m/z 175.12 derived from peptides with C-terminal arginine residues. The pseudo MS(3) spectra acquired on a quadrupole time-of-flight hybrid mass spectrometer displayed two signals at m/z 130.05 and m/z 132.05 characteristic for Oia-containing peptides and a group of six signals (m/z 103.04, 120.04, 130.04, 133.03, 146.04, and 148.04) for 5-HTP-cointaining peptides. In both cases, the relative signal intensities appeared to be independent of the sequence providing a specific fingerprint of each oxidative modification.  相似文献   

15.
The association of cellular toxicity with the physiochemical properties of graphene‐based materials is largely unexplored. A fundamental understanding of this relationship is essential to engineer graphene‐based nanomaterials for biomedical applications. Here, an in vitro toxicological assessment of graphene oxide (GO) and reduced graphene oxide (RGO) and in correlation with their physiochemical properties is reported. GO is found to be more toxic than RGO of same size. GO and RGO induce significant increases in both intercellular reactive oxygen species (ROS) levels and messenger RNA (mRNA) levels of heme oxygenase 1 (HO1) and thioredoxin reductase (TrxR). Moreover, a significant amount of DNA damage is observed in GO treated cells, but not in RGO treated cells. Such observations support the hypothesis that oxidative stress mediates the cellular toxicity of GO. Interestingly, oxidative stress induced cytotoxicity reduces with a decreasing extent of oxygen functional group density on the RGO surface. It is concluded that although size of the GO sheet plays a role, the functional group density on the GO sheet is one of the key components in mediating cellular cytotoxicity. By controlling the GO reduction and maintaining the solubility, it is possible to minimize the toxicity of GO and unravel its wide range of biomedical applications.  相似文献   

16.
The study of the formation of reactive metabolites during drug metabolism is one of the major areas of research in drug development since the link between reactive metabolites and drug adverse effects was well recognized. In particular, it has been shown that acrolein, a reactive carbonyl species sharing carbonylating and alkylating properties, binds covalently to nucleophilic sites in proteins, causing cellular damage. Alizapride, (±)-6-methoxy-N-{[1-(prop-2-en-1-yl)-pyrrolidin-2-yl]methyl}-1H-benzotriazole-5-carboxamide, is a N-allyl containing dopamine antagonist with antiemetic properties for which no data concerning its metabolic fate are so far reported. The study of the in vitro metabolism of alizapride showed the formation of acrolein during the oxidative N-deallylation. Moreover, the formation of an epoxide metabolite has been also described suggesting its role as a putative structural alert. The reactivity of the acrolein and the epoxide generated in alizapride metabolism was demonstrated by the formation of the corresponding adducts with nucleophilic thiols. Overall, ten metabolites have been identified and characterized by electrospray ionization tandem mass spectrometry analysis allowing to propose an in vitro metabolic scheme for alizapride. At the best of our knowledge, this is the second case of a drug involved in the generation of acrolein during its metabolism being the first represented by cyclophosphamide.  相似文献   

17.
Lanthanum-based thin films deposited on the phosphonate 3-aminopropyltriethoxysilane (APTES) self-assembled monolayer (SAM) were prepared on the hydroxylated glass substrate by a self-assembling process from specially formulated solution. Chemical compositions of the films and chemical state of the elements were detected by X-ray photoelectron spectrometry (XPS). The thickness of the films was determined with an ellipsometer, while the morphologies of the original and worn surfaces of the samples were analyzed by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The tribological properties of the films sliding against GCr15 steel ball were evaluated on a UMT-2MT reciprocating friction and wear tester. As the results, the target film was obtained and reaction may have taken place between the film and the glass substrate. The tribological results show that lanthanum-based thin films are superior in reducing friction and resisting wear compared with APTES-SAM and phosphorylated APTES-SAM. SEM observation of the morphologies of worn surfaces indicates that the wear of APTES-SAM and the phosphorylated APTES-SAM is characteristic of brittle fracture and severe abrasion. Differently, slight abrasion and micro-crack dominate the wear of lanthanum-based thin films. The superior friction reduction and wear resistance of lanthanum-based thin films are attributed to the enhanced load-carrying capacity of the inorganic lanthanum particles in the lanthanum-based thin films as well as good adhesion of the films to the substrate.  相似文献   

18.
Microarrays have become a widely used tool to investigate the living cell at different levels. DNA microarrays enable the expression analysis of thousand of genes simultaneously, while protein arrays investigate the properties and interactions of proteins with other proteins and with non-proteinaceous molecules. One crucial step in producing such microarrays is the permanent immobilization of samples on a solid surface. Our goal was to develop diverse linker systems capable of anchoring different biological samples, especially DNA and drug-like small molecules. We developed 6 different chemical surfaces having a 3-D-like linker system for biomolecule immobilization, and compared them to previously described immobilization strategies. The attachment chemistry utilizes the amino reactive properties of acrylic and epoxy functions. The capacity of the support was increased by creating a branching structure holding the reactive functions. The method of anchoring was investigated through a model reaction. From HPLC and mass spectrometry measurements we concluded that the covalent binding of DNA occurs through nucleobases. The tested systems offer the capability to permanently immobilize several biomolecular species in an array format.  相似文献   

19.
Gold nanoparticles show optical properties different from bulk material due to resonance phenomena which depend on local structure and geometry. Electron energy-loss spectrometry (EELS) in scanning transmission electron microscopy (STEM) allows the spatially resolved measurement of these properties at a resolution of few nanometers. In this work, the first monochromated measurements of gold nanoparticles (spheres, rods and triangles) are presented. Due to the improved energy resolution of about 0.2 eV, surface plasmon excitations at energies below 1 eV could be accurately measured from raw experimental data.  相似文献   

20.

Background

Oxidative stress plays a key role in the neuropathogenesis of Human Immunodeficiency Virus-1 (HIV-1) infection causing apoptosis of astroglia cells and neurons. Recent data have shown that oxidative stress is also responsible for the acceleration of human fibroblast telomere shortening in vitro. In the present study we analyzed the potential relations occurring between free radicals formation and telomere length during HIV-1 mediated astroglial death.

Results

To this end, U373 human astrocytoma cells have been directly exposed to X4-using HIV-1IIIB strain, for 1, 3 or 5 days and treated (where requested) with N-acetylcysteine (NAC), a cysteine donor involved in the synthesis of glutathione (GSH, a cellular antioxidant) and apoptosis has been evaluated by FACS analysis. Quantitative-FISH (Q-FISH) has been employed for studying the telomere length while intracellular reduced/oxidized glutathione (GSH/GSSG) ratio has been determined by High-Performance Liquid Chromatography (HPLC). Incubation of U373 with HIV-1IIIB led to significant induction of cellular apoptosis that was reduced in the presence of 1 mM NAC. Moreover, NAC improved the GSH/GSSG, a sensitive indicator of oxidative stress, that significantly decreased after HIV-1IIIB exposure in U373. Analysis of telomere length in HIV-1 exposed U373 showed a statistically significant telomere shortening, that was completely reverted in NAC-treated U373.

Conclusion

Our results support the role of HIV-1-mediated oxidative stress in astrocytic death and the importance of antioxidant compounds in preventing these cellular damages. Moreover, these data indicate that the telomere structure, target for oxidative damage, could be the key sensor of cell apoptosis induced by oxidative stress after HIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号