首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the lattice-mismatched growth of step-graded InxAl1−xAs buffer layers on GaAs (0 0 1) substrates by molecular beam epitay (MBE). The approach to growing highly lattice-mismatched epilayers is to interpose a buffer layer between the substrate and the active layer. Two samples G30 and G40 with active layer compositions, respectively, x = 0.46 and x = 0.41, are studied by photoluminescence (PL). At low temperature, the PL spectra show a large broadened band whose energy and intensity depend on the active layer composition. The step-graded layer compositions improved the crystalline quality of these structures and increase the active layer PL band intensity.  相似文献   

2.
Interband transitions in GaNyAs1−y/GaAs multi quantum well (MQW) samples with y=0.012 and 0.023 have been studied by contactless electroreflectance spectroscopy (CER). Optical transitions related to absorption in the GaAs barriers and in the GaNyAs1−y/GaAs QWs have been observed and analyzed. The GaAs related transition exhibits clear Franz-Keldysh oscillations with the period corresponding to the built-in electric field of 14 and 17 kV/cm for samples with y=0.012 and 0.023, respectively. The portion of the CER spectrum related to absorption in the GaNyAs1−y/GaAs QW exhibits two clear resonances which are attributed to optical transitions between the ground and excited states confined in the QWs. The resonance attributed to the ground state transition is associated with absorption between the first light- and heavy-hole subbands and the first electron subband (11L and 11H) while the resonance attributed to the excited state transition is associated with absorption between the second heavy-hole subband and the second electron subband (22H). The energies of the 11H and 22H transitions have been matched with those obtained from theoretical calculations performed within the effective mass approximation. Thus, the GaNyAs1−y/GaAs QWs are type-I structures with a conduction band offset, QC, between 70 and 80%. Moreover, the incorporation of N atoms into GaAs is found to cause a significant increase in the electron effective mass. The determined values of electron effective mass for GaNyAs1−y/GaAs QW with y=0.012 and 0.023 are 0.105m0 and 0.115m0, respectively.  相似文献   

3.
We have investigated the temperature and composition dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x ≈ 0.1-0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. The efficient PL is peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. The band-gap energy of the Ga1−xMnxN layers decreased with increasing temperature and manganese composition. The band-gap energy of the Ga1−xMnxN layers was modeled by the Varshni equation and the parameters were determined to be α = 2.3 × 10−4, 2.7 × 10−4, 3.4 × 10−4 eV/K and β = 210, 210, and 230 K for the manganese composition x = 0.1%, 0.2%, and 0.8%, respectively. As the Mn concentration in the Ga1−xMnxN layers increased, the temperature dependence of the band-gap energy was clearly reduced.  相似文献   

4.
Zn1−xMnxSe/GaAs (1 0 0) epilayers were grown using a hot-wall epitaxy method. The spectroscopic ellipsometry was used to determine the optical dielectric constant. The obtained pseudodielectric function spectra revealed the distinct structures at energies of E0, E0 + Δ0, E1, E1 + Δ1, E2 and  + Δ0 critical points (CPs) at lower Mn composition range. These critical points were determined by analytical line-shapes fitted to numerically calculated derivatives of their pseudodielectric functions. The peak characteristics were changed with the change in Mn composition. The spectral dependence of pseudodielectric function 〈?〉 was used to obtain the fundamental energy gaps E0 including a unique relation with Mn composition. Also, the shifting and broadening of the CPs were observed with increasing Mn composition.  相似文献   

5.
Semiconductor optoelectronic devices based on GaN and on InGaN or AlGaN alloys and superlattices can operate in a wide range of wavelengths, from far infrared to near ultraviolet region. The efficiency of these devices could be enhanced by shrinking the size and increasing the density of the semiconductor components. Nanostructured materials are natural candidates to fulfill these requirements. Here we use the density functional theory to study the electronic and structural properties of (10,0) GaN, AlN, AlxGa1 − xN nanotubes and GaN/AlxGa1 − xN heterojunctions, 0<x<1. The AlxGa1 − xN nanotubes exhibit direct band gaps for the whole range of Al compositions, with band gaps varying from 3.45 to 4.85 eV, and a negative band gap bowing coefficient of −0.14 eV. The GaN/AlxGa1 − xN nanotube heterojunctions show a type-I band alignment, with the valence band offsets showing a non-linear dependence with the Al content in the nanotube alloy. The results show the possibility of engineering the band gaps and band offsets of these III-nitrides nanotubes by alloying on the cation sites.  相似文献   

6.
Nitrogen-doped p-type ZnSe, p-type ZnSySe1−y, and p-type Zn1−xMgxSySe1−y epilayers were grown on n-type GaAs (1 0 0) substrates by molecular beam epitaxy. Photoluminescence (PL) spectra for the p-type ZnSe and the lattice-matched p-type ZnS0.06Se0.94, and p-type Zn0.92Mg0.08S0.12Se0.88 epilayers showed a deep acceptor bound exciton emission and a donor-acceptor pair emission. Temperature-dependent PL measurements were carried out to determine the activation energies of these states. The activation energies of the acceptor-bound excitons and the donor-acceptor pairs were determined to be 40 and 65 meV in the p-type ZnSe epilayer, 20 and 45 meV in the p-type ZnS0.06Se0.94, and 45 and 43 meV in the p-type Zn0.92Mg0.08S0.12Se0.88 epilayers.  相似文献   

7.
Phase relationships, thermal expansion and electrical properties of Mg1 − xFexO (x = 0.1-0.45) cubic solid solutions and Fe3 − x − yMgxCryO4 ± δ (x = 0.7-0.95; y = 0 or 0.5) spinels were studied at 300-1770 K in the oxygen partial pressure range from 10 Pa to 21 kPa. Increasing iron content enlarges the spinel phase stability domain at reduced oxygen pressures and elevated temperatures. The total conductivity of the spinel ceramics is predominantly n-type electronic and is essentially p(O2)-independent within the stability domain. The computer simulations using molecular dynamics technique confirmed that overall level of ion diffusion remains low even at high temperatures close to the melting point. Temperature dependencies of the total conductivity in air exhibit a complex behavior associated with changing the dominant defect-chemistry mechanism from prevailing formation of the interstitial cations above 1370-1470 K to the generation of cation vacancies at lower temperatures, and with kinetically frozen cation redistribution in spinel lattice below 700-800 K. The average thermal expansion coefficients of the spinel ceramics calculated from dilatometric data in air vary in the range (9.6-10.0) × 10− 6 K− 1 at 300-500 K and (13.2-16.1) × 10− 6 K− 1 at 1050-1370 K. Mg1 − xFexO solid solutions undergo partial decomposition on heating under oxidizing and mildly reducing conditions, resulting in the segregation of spinel phase and conductivity decrease.  相似文献   

8.
We have calculated the optical gain spectra in unstrained graded GaAs/AlxGa1 − xAs single quantum well lasers as a function of the energy of the radiation, the quantum well width and the interface thickness. The optical gain spectra were calculated using the density matrix approach (Luttinger–Kohn method), considering the parabolic band model (conduction band), all subband mixing between the heavy and light holes (valence band), and the transversal electrical light polarization. Our results show that the optical peak gain is sensitive to the width and the graded profile of the interfaces, and is blue-shifted as a function of the interface width.  相似文献   

9.
Reflection high-energy electron diffraction, atomic force microscopy, transmission electron microscopy, and double-crystal X-ray curves showed that high-quality InAs quantum dot (QD) arrays inserted into GaAs barriers were embedded in an Al0.3Ga0.7As/GaAs heterostructure. The temperature-dependent photoluminescence (PL) spectra of the InAs/GaAs QDs showed that the exciton peak corresponding interband transition from the ground electronic subband to the ground heavy-hole subband (E1-HH1) was dominantly observed and that the peak position and the full width at half maximum corresponding to the interband transitions of the PL spectrum were dependent on the temperature. The activation energy of the electrons confined in the InAs/GaAs QDs was 115 meV. The electronic subband energy and the energy wave function of the Al0.3Ga0.7As/GaAs heterostructures were calculated by using a self-consistent method. The electronic subband energies in the InAs/GaAs QDs were calculated by using a three-dimensional spatial plane wave method, and the value of the calculated (E1-HH1) transition in the InAs/GaAs QDs was in reasonable agreement with that obtained from the PL measurement.  相似文献   

10.
InGaN layers were grown by molecular beam epitaxy (MBE) either directly on (0 0 0 1) sapphire substrates or on GaN-template layers deposited by metal-organic vapor-phase epitaxy (MOVPE). We combined spectroscopic ellipsometry (SE), Raman spectroscopy (RS), photoluminescence (PL) and atomic force microscopy (AFM) measurements to investigate optical properties, microstructure, vibrational and mechanical properties of the InGaN/GaN/sapphire layers.The analysis of SE data was done using a parametric dielectric function model, established by in situ and ex situ measurements. A dielectric function database, optical band gap, the microstructure and the alloy composition of the layers were derived. The variation of the InGaN band gap with the In content (x) in the 0 < x ≤ 0.14 range was found to follow the linear law Eg = 3.44-4.5x.The purity and the stability of the GaN and InGaN crystalline phase were investigated by RS.  相似文献   

11.
A series of ZnO1−xSx alloy films (0 ≤ x ≤ 1) were grown on quartz substrates by radio-frequency (rf) magnetron sputtering of ZnS ceramic target, using oxygen and argon as working gas. X-ray diffraction measurement shows that the ZnO1−xSx films have wurtzite structure with (0 0 2) preferential orientation in O-rich side (0 ≤ x ≤ 0.23) and zinc blende structure with (1 1 1) preferential orientation in S-rich side (0.77 ≤ x ≤ 1). However, when the S content is in the range of 0.23 < x < 0.77, the ZnO1−xSx film consists of two phases of wurtzite and zinc blende or amorphous ZnO1−xSx phase. The band gap energy of the films shows non-linear dependence on the S content, with an optical bowing parameter of about 2.9 eV. The photoluminescence (PL) measurement reveals that the PL spectrum of the wurtzite ZnO1−xSx is dominated by visible band and its PL intensity and intensity ratio of UV to visible band decrease greatly compared with undoped ZnO. All as-grown ZnO1−xSx films behave insulating, but show n-type conductivity for w-ZnO1−xSx and maintain insulating properties for β-ZnO1−xSx after annealed. Mechanisms of effects of S on optical and electrical properties of the ZnO1−xSx alloy are discussed in the present work.  相似文献   

12.
In this work we analyze the effect of (NH)2Sx wet treatment on the GaAs(1 0 0) covered with “epiready” oxide layer without any pretreatment in order to check the removal of oxides and carbon-related contamination, and the formation of sulfur species. The sulfidation procedure consisted of epiready sample dipping (at room and 40 °C temperatures) in an ammonium polysulfide solution combined with a UHV flash annealing up to 500 °C.The inspection of the XPS As 2p3/2 and Ga 2p3/2 spectra taken at surface sensitive mode revealed: (i) the temperature-dependent reduction of the amount of GaAs oxides and carbon contamination after sulfidation, and almost their complete removal after subsequent annealing, (ii) the creation of sulfur bonds with both Ga and As, with more thermally stable Ga-S bonds, and (iii) the slight reduction in elemental arsenic amount.  相似文献   

13.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si (1 0 0) and glass substrates. Chemical composition and interface properties have been studied by modelling Rutherford backscattering spectra (RBS) using SIMNRA programme. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Simulation of the energy spectra shows an interdiffusion profile in the thickest films, but no diffusion is seen in thinner ones. Microscopic characterizations of the films are done with X-ray diffraction (XRD) measurements. All the samples are polycrystalline, with an hcp structure and show a 〈0 0 0 1〉 preferred orientation. Atomic force microscopies (AFM) reveal very smooth film surfaces.  相似文献   

14.
Zn1−xCoxO (0 ≤ x ≤ 0.15) thin films grown on Si (1 0 0) substrates were prepared by a sol-gel technique. The effects of Co doped on the structural, optical properties and surface chemical valence states of the Zn1−xCoxO (0 ≤ x ≤ 0.15) films were investigated by X-ray diffraction (XRD), ultraviolet-visible spectrometer and X-ray photoelectron spectroscopy (XPS). XRD results show that the Zn1−xCoxO films retained a hexagonal crystal structure of ZnO with better c-axis preferred orientation compared to the undoped ZnO films. The optical absorption spectra suggest that the optical band-gap of the Zn1−xCoxO thin films varied from 3.26 to 2.79 eV with increasing Co content from x = 0 to x = 0.15. XPS studies show the possible oxidation states of Co in Zn1−xCoxO (0 ≤ x ≤ 0.05), Zn0.90Co0.10O and Zn0.85Co0.15O are CoO, Co3O4 and Co2O3, with an increase of Co content, respectively.  相似文献   

15.
The temperature dependent visible photoluminescence (PL) property of a-SiOx:H (x<2) samples prepared in a PECVD system by using SiH4+CO2 gas mixture is investigated at a temperature range of 20 K-400 K. One of the two explicitly distinguished PL bands, with varying peak photon energies between 1.70 and 2.05 eV, can be detected at only low temperatures below 200 K, which is attributed to tail-to-tail radiative recombination. Thermal quenching parameter (TL) of the tail-to-tail PL band is calculated as varying between 120 and 280 K as the atomic oxygen concentration ([O]at.%) of the samples increases. Stokes shift (ΔEStokes) of the tail-to-tail PL band is found to change from 85 meV to 420 meV due to band tail widening. The other PL band emerges at 2.1 eV and can be detected at higher temperatures with thermal activation behavior. The activation energies calculated about room temperature vary in the range of 8 meV-50 meV with oxygen concentration. Thermal activation of the 2.1 eV PL band is attributed to the behavior of thermally activated incoherent hopping migration of electrons. These electrons combine with self trapped holes (STHs) to form self trapped excitons (STEs). STEs are localized at intrinsic defects of SiO2 structure such as oxygen vacancies (E′ centers) and non-bridging oxygen hole centers (NBOHC).  相似文献   

16.
We have investigated the influence of vicinal GaAs substrates on the optical and electronic properties of InGaAs/GaAs quantum wells (QWs). A single In0.10Ga0.90As QW was grown by molecular-beam epitaxy on a vicinal GaAs(0 0 1) substrate with a miscut angle of 0° (nominal), 2°, 4° and 6° towards [1 1 0]. The carrier diffusion was obtained by a micro-photoluminescence scan technique that permits to observe the effective diffusion length characterized by the lateral spread of carriers in the QW followed by radiative recombination. The carrier diffusion length was obtained parallel (L||) and perpendicular (L) to the atomic steps. The diffusion length decreases as the temperature increases up to 100 K. Above this temperature we found different behaviours that depend on the sample miscut angle.  相似文献   

17.
CdSexTe1−x nanocrystals (x=0.25, 0.40, 0.50, 0.60 and 0.75) were synthesized using thioglycerol as a stabilizing agent. The composition of the CdSexTe1−x nanocrystals was precisely controlled by tuning the precursor (Se/Te) ratio. The structural, morphological and optical properties of the nanocrystals were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), diffused reflectance spectroscopy (DRS) and photoluminescence (PL) measurements. It is found that the Se/Te ratio significantly affects the properties of the resultant CdSexTe1−x nanocrystals. XRD pattern of the CdSexTe1−x nanocrystals revealed cubic, hexagonal and mixed phases depending on the ratio of Se:Te. Surface morphology of the CdSexTe1−x nanocrystals showed nanoclusters of sizes ∼50 nm, with the adjacent cluster interlinking each other. DRS revealed the size dependence band gap energy prevailing in the CdSexTe1−x nanocrystals from 1.52 to 2.66 eV due to the optical bowing effect. PL measurements exhibited band edge emission in the visible spectral region, and are red shifted with increase in Se concentration. The facile route employed in the present work to synthesis the CdSexTe1−x nanocrystals in an aqueous medium is simple and controllable, and the strategy presented will be handy in preparing diverse semiconducting nanocrystals.  相似文献   

18.
In this paper, nitridation process of GaAs (1 0 0) substrates was studied in-situ using X-ray photoelectron spectroscopy (XPS) and ex-situ by means of electrical method I-V and photoluminescence surface state spectroscopy (PLS3) in order to determine chemical, electrical and electronic properties of the elaborated GaN/GaAs interfaces.The elaborated structures were characterised by I-V analysis. The saturation current IS, the ideality factor n, the barrier height ΦBn and the serial resistance RS are determined.The elaborated GaN/GaAs structures are also exhibited a high PL intensity at room temperature. From the computer-aided analysis of the power-dependent PL efficiency measurements (PLS3 technique), the value of the interface state density NSS(E) close to the mid-gap was estimated to be in the range of 2-4 × 1011 eV−1 cm−2, indicating a good electronic quality of the obtained interfaces.Correlation among chemical, electronic and electrical properties of the GaN/GaAs interface was discussed.  相似文献   

19.
The structural and optical properties of an InxGa1−xN/GaN multi-quantum well (MQW) were investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), spectroscopic ellipsometry (SE) and photoluminescence (PL). The MQW structure was grown on c-plane (0 0 0 1)-faced sapphire substrates in a low pressure metalorganic chemical vapor deposition (MOCVD) reactor. The room temperature photoluminescence spectrum exhibited a blue emission at 2.84 eV and a much weaker and broader yellow emission band with a maximum at about 2.30 eV. In addition, the optical gaps and the In concentration of the structure were estimated by direct interpretation of the pseudo-dielectric function spectrum. It was found that the crystal quality of the InGaN epilayer is strongly related with the Si doped GaN layer grown at a high temperature of 1090 °C. The experimental results show that the growth MQW on the high-temperature (HT) GaN buffer layer on the GaN nucleation layer (NL) can be designated as a method that provides a high performance InGaN blue light-emitting diode (LED) structure.  相似文献   

20.
Nitridation of GaAs (1 0 0) by N2+ ions with energy Ei = 2500 eV has been studied by Auger- and Electron Energy Loss Spectroscopy under experimental conditions, when electrons ejected only by nitrated layer, without contribution of GaAs substrate, were collected. Diagnostics for quantitative chemical analysis of the nitrated layers has been developed using the values of NKVV Auger energies in GaN and GaAsN chemical phases measured in one experiment, with the accuracy being sufficient for separating their contributions into the experimental spectrum. The conducted analysis has shown that nanofilm with the thickness of about 4 nm was fabricated, consisting mainly of dilute alloy GaAs1−xNx with high concentration of nitrogen x ∼ 0.09, although the major part of the implanted nitrogen atoms are contained in GaN inclusions. It was assumed that secondary ion cascades generated by implanted ions play an important role in forming nitrogen-rich alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号