首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we report the influence of 90° domain switching on the physical properties of tetragonal BaTiO3 single crystals. It is found that the contribution of 90° domain switching to the piezoelectric response is much larger in magnitude than the contribution of the direct piezoelectric effect under large external mechanical stress. Simultaneously, the interconversion of a and c crystallographic axes and the large actuation strain as high as 1% is induced by 90° domain switching in the tetragonal BaTiO3 single crystal.  相似文献   

2.
A highly (100)-oriented metallic LaNiO3 film was prepared directly on a Si substrate by a simple metalorganic decomposition (MOD) technique using lanthanum nitrate and nickel acetate as the starting sources. Subsequent Pb(Zr,Ti)O3 (PZT) thin films deposited on the LaNiO3-coated Si substrate were obtained by a modified sol–gel method. It was found that the PZT thin films began to form a single perovskite phase at a low annealing temperature of 530 °C, and exhibited highly (100) orientation. A ferroelectric capacitor of Pt/Pb(Zr,Ti)O3/LaNiO3/Si annealed at 600 °C displayed a good P-E hysteresis characteristic and was fatigue-free even after 1011 switching cycles. Received: 25 May 2000 / Accepted: 9 August 2000 / Published online: 30 November 2000  相似文献   

3.
Sub-coercive field dynamic ferroelectric hysteresis of a morphotropic phase boundary composition of the PZT-PZN ceramic was investigated under influence of the compressive stress. The scaling relation of hysteresis area 〈A〉 against frequency f, field amplitude E0, and stress σ took a form of , which is not different significantly to that of other PZT-PZN compositions with pure tetragonal or rhombohedral structure, as well as to that of soft and hard PZT bulk ceramics. This study suggested that the domain structures, not ceramic compositions, played a key role in controlling dynamic hysteresis behavior of ferroelectric materials.  相似文献   

4.
The ferroelectric domain wall thickness of a fluoride BaMgF4 single crystal was investigated by piezoresponse force microscopy. It was found that the domain wall thickness shows a strong spatial variation in the as‐grown crystal and the polarization reversal process. The original wall thickness is greater (about two to seven times) than that switched by the tip fields of the atomic force microscope. A significantly narrower domain wall was obtained in the higher tip‐field. The trapped defects at the domain wall play an important role in the spatial variation of the polarization width of 180° domain wall in the BaMgF4 single crystal. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In a birefringent host crystal, the spontaneous emission rate of zero-phonon line of a single-impurity molecule depends on the angles between the transition dipole moment and the principal axes of the dielectric (permittivity) tensor and also on the main dielectric constants of a host crystal. In this paper, the spontaneous emission rate of the electric quadrupole transition of a single-impurity molecule is calculated for uniaxial host crystals with the ordinary reflective indices no=1.5, 2, 3 and a variable extraordinary reflective index, and for seven biaxial host crystals (anthracene, chrysene, diphenyl, fluorine, naphthalene, phenanthrene, terphenyl). For the above-mentioned biaxial crystals, differences in the values of spontaneous emission rate of the quadrupole transition in the same host crystal are up to 11%.  相似文献   

6.
Poling dynamics of lithium niobate crystals   总被引:2,自引:0,他引:2  
Ferroelectric domain reversal via electric field poling of congruently melting lithium niobate (LiNbO3) crystals is investigated. An electro-optic interferometric observation technique reveals spatial and temporal dynamics of the poling process. Starting from seeds, the domains grow until the entire crystal has a switched polarization. During the switching process the boundaries are preferentially aligned along the crystallographic axes. The coercive field between two sequenced domain inversions is transiently reduced after a poling event, and recovers exponentially with a time constant of about half a minute. No light-induced change of the recovery time constant, neither with green nor with ultraviolet light, is observed. The results are of relevance for domain engineering of LiNbO3 crystals. Received: 6 February 2003 / Published online: 9 April 2003 RID="*" ID="*"Corresponding author. Fax: +49-228/734038, E-mail: wengler@physik.uni-bonn.de  相似文献   

7.
The strain and size effects on the ferroelectric properties of BaTiO3 films are studied using the molecular dynamics method based on a shell model. It is found that from microscopic view, these two effects share the same physical nature, i.e., the resulting crystal cell distortions lead to the separation of negative and positive charge eentres. The strain and size effects are therefore coupled, and the critical thicknesses of films would depend on the in-plane strains, which provides a possible interpretation on the discrepancies among the experimental measurements of the critical thicknesses. A polarization map is given to clearly reflect the relations among the size, strain and polarization of the nano films.  相似文献   

8.
Ferroelectric domain structures of (001)‐oriented Pb(Zn1/3Nb2/3)O3–7%PbTiO3 (PZN‐7%PT) single crystals were visualized and characterized by piezoresponse force microscopy (PFM). Locally regular domain configurations are found to be possibly related to the stable macroscopic properties in the PZN‐7%PT single crystals. Nanoscale piezoresponse hysteresis loops measured by PFM tip revealed no evidence of local domain switching behavior in the PZN‐7%PT single crystal. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
To investigate temperature-dependent ferroelectric and dielectric properties of ferroelectric films, Bi3.25La0.75Ti3O12 (BLT) thin films were prepared on Pt-coated silicon substrates by pulsed laser deposition. The ferroelectric and dielectric behaviors have been studied in a wide temperature range from 80 K to room temperature. The saturated polarization (Psat) decreases with decreasing temperature and decreasing electric field, whereas remnant polarization (Pr) shows a more complex temperature dependence. These results, which can be well explained based on a temperature-dependent charged defects-domain wall interaction model, might be helpful for further understanding the domain switching behavior. Based on these results, an alternative way to investigate temperature-dependent ferroelectric fatigue is proposed and experimentally carried out. The measured fatigue rate is found to be linearly dependent on temperature, consistent with the report on Pb(Zr,Ti)O3 films. Temperature-dependent dielectric measurements of the films further confirm the above explanation.  相似文献   

10.
The thermal expansion ST has been measured in the system BaTi1−xSnxO3, both for the pure compositions x=0 (BT) and x=1 (BS), and for solid solutions 0.025≤x≤0.2 (BTS). For all ceramics examined, a non-linear temperature dependence ST(T) has been observed at elevated temperatures This is related to thermally generated impurities and, below the Burns-temperature Td of BT and BTS, to the non-linear strain contribution of polar nanoregions. With increasing Sn-content x, a steep increase of the Burns-temperature is found in BTS for compositions x≥0.025.  相似文献   

11.
Time interval of slow polarization reversal in ferroelectric thin films is broadened over more than two decades to disobey the classical Kolmogorov-A vrami-Ishibashi (KAI) equation as the applied field approaches the coercive field of domain switching. The assumption of a Lorentzian distribution of logarithmic waiting times of reversed domain nucleation in this equation can resolve this dilemma. In our work, we explain this equation from the coercive-voltage distribution in thin films, and derive a similar function to describe slow polarization reversal from the consideration of a long-time imprint effect rather than the KAI model.  相似文献   

12.
Modified BiScO3-PbTiO3 (BSPT) tetragonal single crystals were grown using high temperature solution method. The dielectric, piezoelectric and elastic properties of single domain BSPT crystals, after poling along [001] crystallographic direction, have been determined experimentally using the resonance method. The results showed that the BSPT tetragonal crystals possess good piezoelectric properties, with electromechanical coupling factor about 88% and piezoelectric coefficient over 400 pC/N at room temperature. BSPT tetragonal crystals have high Curie temperature around 436 °C and high coercive field ∼28 kV/cm, also, the crystal exhibited a very good temperature stability of the properties till 380 °C. For comparison, the material constants of tetragonal Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZNT) single crystals were measured and listed in this paper.  相似文献   

13.
This work presents the structural and spectroscopic characterization of undoped and neodymium doped CaNb2O6 single crystal fibers grown by the low cost and versatile Laser Heated Pedestal Growth technique. To evaluate the potentialities of doped fibers, polarized absorption (GSA,max 809nm = 5.85×10–20cm2 with FWHM = 18 nm), luminescence and lifetime (exp = 145 s) measurements were taken, and radiative properties were also assessed by the Judd–Ofelt approach. The gain (SEESA) spectrum was measured using the pump-probe technique and stimulated emission was observed at 1.064 m with (SE, max 1.064 m = 7.2× 10–20 cm2 and FWHM = 12 nm). The results are comparable to those of other well known niobate bulk laser crystals, but the easier, cheaper and faster growth of compact CaNb2O6:Nd3+ single crystal fibers makes them more attractive media for compact optical devices, such as diode laser pumped miniature lasers in the near infrared region.This revised version was published online in March 2005. In the previous version, the published online date was missing  相似文献   

14.
Electric-field-induced strain behavior of (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMNT) crystals with different orientations and compositions was investigated for use as electromechanical actuators. Crystallographically, high strains with low hysteresis were achieved for 〈001〉 oriented rhombohedral crystals (29%≤x≤31%) near a morphotropic phase boundary, rather than 〈110〉 and 〈111〉. Domain instability could explain inferior strain levels and large hysteresis for 〈110〉 and 〈111〉 oriented crystals. Ultrahigh strain levels up to 1.8% could be achieved for 〈001〉 oriented PMNT crystals, being related to an E-field induced phase transition. −2 kV/cm negative E-field can be applied to PMNT ferroelectric material with low hysteresis. High strain with low hysteresis makes PMNT crystals promising candidates for high performance solid-state actuators.  相似文献   

15.
Cubic- and rectangular-shape single crystals of α-AlF3 in sizes of 5-50 μm have been synthesized by a solid-vapor phase process. Using the electron beam induced decomposition of AlF3, a method is demonstrated for fabricating patterned aluminum nanowires in AlF3 substrate in a scanning electron microscope. By controlling the accelerating voltage, the beam current and scanning time, it is possible to fabricate metallic nanowires of different sizes. The aluminum nanowires may act as nano-interconnects for nanoelectronics. This work demonstrates a potential technique for e-beam nanofabrication.  相似文献   

16.
Generation of X-ray induced secondary electrons in Ti and TiO2 was studied from both experimental and theoretical approaches, using X-ray photoelectron spectroscopy (XPS) attached to a synchrotron radiation facility and Monte Carlo simulation, respectively.The experiment revealed that the yields of secondary electrons induced by X-rays (electrons/photon) at photon energies to 4950 and 5000 eV for Ti and TiO2 are δTi(4950 eV) = 0.002 and δTi(5000 eV) = 0.014 while those for TiO2 are δTiO2(4950eV)=0.003 and δTiO2(5000eV)=0.018.A novel approach to obtain the escape depth of secondary electrons has been proposed and applied to Ti and TiO2. The approach agreed very well with the experimental data reported so far. The Monte Carlo simulation predicted; and while and .An experimental examination on the contribution of X-ray induced secondary electrons to photocatalysis in TiO2 has also been proposed.  相似文献   

17.
We report the acoustic imaging frequency dynamics of ferroelectric domains by low-frequency acoustic probe microscopy based on the commercial atomic force microscopy. It is found that ferroelectric domain could be firstly visualized at lower frequency down to 0.5 kHz by AFM-based acoustic microscopy. The frequency-dependent acoustic signal revealed a strong acoustic response in the frequency range from 7kHz to 10 kHz, and reached maximum at 8.1 kHz. The acoustic contrast mechanism can be ascribed to the different elastic response of ferroelectric microstructures to local elastic stress fields, which is induced by the acoustic wave transmitting in the sample when the piezoelectric transducer is vibrating and exciting acoustic wave under ac electric fields due to normal piezoelectric effects.  相似文献   

18.
The modified strong dipole-proton coupling (MSDPC) model, which predicted several static and dynamic dielectric properties of KH2PO4 or KDP-type ferroelectrics, was used to investigate the properties of these crystals on the local scale. Results calculated by molecular dynamics (MD) simulation show that both order-disorder and displacive characteristics of one PO4 dipole are present in KDP and KD2PO4 (DKDP). These results correlate with experimental data from NMR and neutron scattering studies of local properties.  相似文献   

19.
A dielectric and ultrasonic velocity study of antiferrodistortive and ferroelectric phase transitions in Sr1−xAxTiO3 (A=Ba, Pb) is reported. It is shown that both phase transitions co-exist at x<0.03 but at the higher concentration the ferroelectric phase transition entirely suppresses the antiferrodistortive phase transition. The experimentally obtained phase diagrams are discussed in the framework of the Landau phenomenological theory.  相似文献   

20.
The evolution of piezoelectric properties of Pb(Zr,Ti)O3 (PZT) thin films after ion beam etching have been investigated at the nanoscale level by piezoelectric force microscopy. A comparison of the piezoelectric properties on etched and unetched films is realized. Piezoelectric contrasts imaging evidences a modification of the domain architecture at the film surface. Local piezoelectric hysteresis loops measurements on grains indicate that the coercive voltage for switching is much higher for the etched films (2.3 V) compared to the unetched ones (1.0 V) while the average piezoelectric activity is slightly lower. The results are explained in terms of grain-damaging during etching and domain-wall pinning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号