首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
An experimental study of the mechanical properties of two types of muskeg was carried out. The results have further verified the basic features of a mathematical model for the pressure-sinkage characteristics of muskeg proposed previously. The procedure for deriving the value of the stiffness of the underlying peat from load-sinkage tests has been validated. The response of the muskeg to repetitive loading was measured. It has been found that these muskeg types exhibit noticeable elastic rebound and hysteresis during the unloading-reloading cycle. The average slope of the unloading and reloading line appears to increase with the load level at which the unloading-reloading cycle begins. The experimental results further confirm that from thw vehicle mobility as well as environmental protection standpoints, the tearing-off of the muskeg surface mat by vehicle running gear is to be avoided. When the mat is torn, the vehicle running gear will be in contact with the underlying peat which has lower bearing capacity and shear strength. This results in higher sinkage and lower traction.  相似文献   

2.
This study presents a developed hybrid electrical air-cushion tracked vehicle (HETAV) for the transportation operation of agricultural and industrial goods on the swamp peat terrain bearing capacity of 5 kN/m2. The vehicle’s design parameters are optimized by using the developed mathematical models which are made based on the kinematics and dynamics behaviors of the vehicle. A set of sensors are used with this vehicle to activate the air-cushion system and battery pack recharging system. The vehicle’s air-cushion system is protected by a novel-design auto-adjusting supporting system. The air-cushion dragging motion resistance is overcome with additional thrust which is developed by a propeller. The vehicle is equipped with the air-cushion system to make the vehicle ground contact pressure 5 kN/m2.  相似文献   

3.
This paper deals with experiments concerning the shearing properties of sand under repeated loading simulating the ground pressure distribution of a tracked vehicle. Shearing tests were carried out in sand by using a direct shear apparatus. It was confirmed that the shear strength of sand under repeated loading decreases with an increase in the number of loadings. This influences the soil thrust exerted by a highspeed tracked vehicle.  相似文献   

4.
The main purpose of this paper is to evaluate the effects of a jumping action of a tracked vehicle mounted with a vertical oscillator on vibro-compaction of a high lifted decomposed granite. A vibro-compaction test was executed using a model tracked vehicle of 4.9 kN weight under a condition of frequency of 16 Hz and load ratio of maximum vertical exciting force to vehicle weight of 0.2–2.0. As a result, it was observed that both the amount of sinkage of terrain surface and the dry density of soil increased hyperbolically with increment of the load ratio and the dry density distribution with depth became uniform for the whole depth of the soil stratum. It was confirmed that the volume shrinkage of soil was succeeded by the propagation of acceleration to deep stratum due to the jumping action and the dilatancy phenomenon due to an alternative shear stress. The optimum load ratio obtaining a maximum dry density at the frequency of 16 Hz was judged to be 2.0 within this experiment. In the application of these test results to an actual prototype tracked vehicle of 39.2 kN weight, it was estimated that the degree of compaction of a high lifted soil stratum of 90 cm became over 90% at the load ratio of 2.0.  相似文献   

5.
郑开启  刘钊  秦顺全  周满 《力学学报》2016,48(5):1136-1144
钢筋混凝土梁的挠度计算通常不计入剪切变形的贡献,然而对于斜向开裂的有腹筋混凝土梁,斜裂缝会显著降低梁体的有效剪切刚度,导致剪切变形值显著增大,因此在验算评估时应予以考虑.为评价钢筋混凝土梁斜向开裂后的有效剪切刚度,首先,基于变角桁架模型推导了钢筋混凝土梁在箍筋屈服状态下的有效剪切刚度;与弹性剪切刚度比较发现,剪切刚度退化系数的主要影响因素为材料弹模比、配箍率和斜压杆倾角.其次,基于试验剪切变形曲线表现出的刚度退化规律,提出了可用于不同开裂程度下剪切刚度计算的恒定切线刚度退化模式,并采用开裂后的剪力增量作为反映开裂程度的定量指标.最后,根据最小能量原理得到了剪切刚度退化中两个关键参数:斜压杆倾角和剪切刚度退化系数的解析公式.通过2根薄腹混凝土梁剪切变形试验以及收集的15个受剪梁段的剪切变形数据对模型有效性进行了验证,验证结果表明:有腹筋混凝土梁剪切刚度分析模型能较为准确地预测箍筋屈服状态的剪切刚度,并能反映不同开裂程度下的剪切刚度退化规律.  相似文献   

6.
Single rigid body models are often used for fast simulation of tracked vehicle dynamics on soft soils. Modeling of soil-track interaction forces is the key modeling aspect here. Accuracy of the soil-track interaction model depends on calculation of soil deformation in track contact patch and modeling of soil resistive response to this deformation. An algorithmic method to calculate soft soil deformation at points in track contact patch, during spatial motion simulation using single body models of tracked vehicles, is discussed here. Improved calculations of shear displacement distribution in the track contact patch compared to existing methods, and realistically modeling plastically deformable nature of soil in the sinkage direction in single body modeling of tracked vehicle, are the novel contributions of this paper. Results of spatial motion simulation from a single body model using the proposed method and from a higher degree of freedom multibody model are compared for motion over flat and uneven terrains. Single body modeling of tracked vehicle using the proposed method affords quicker results with sufficient accuracy when compared to those obtained from the multibody model.  相似文献   

7.
The aim of this paper is to compare a new vertical vibro-compaction machine, carried by a tracked vehicle of total weight 10.9 kN, with compactors using centrifugal, vertical and horizontal oscillators at the exciting force of 9.8 kN and at a frequency of 16 Hz. These were tested experimentally on a thick lift of decomposed weathered granite sandy soil. It was observed that the final amount of sinkage of the terrain surface using the vertical vibro-tracked vehicle was the greatest. The final distribution of dry density was almost uniform in depth and the values were the largest of all other maximum dry densities for centrifugal and horizontal vibro-tracked vehicles. As a result, the vertical vibro-tracked vehicle was verified theoretically from the analysis of the stress and the acceleration propagation to be an excellent and impressive new compaction machine for compacting thick lifts of soil stratum.  相似文献   

8.
An interlaminar-shear-stress analysis developed earlier by Tsai et al. (1990, Micro-cracking-Induced Damage in Composites) for a [φm/θn], bi-directional composite laminate is used to solve the case of a cross-ply [0m/90n]x laminate with the 90° layer only or both layers cracked under pure shear loading. Strains, forces and laminate shear modulus reduction due to matrix cracking were obtained. Experimental results for shear modulus as a function of crack densities were obtained by a simple shear test and they agree very well with the theoretical prediction.  相似文献   

9.
The mechanical behaviour of the upper layers of a sandy loam soil was studied under standard triaxial compression and direct shear box tests. Variations of soil material properties were investigated at four different initial dry bulk densities of 1410, 1520, 1610 and 1670 kg/m3. Soil deformation and volume change under the triaxial compression loading were also studied at these bulk densities. Results from the two tests showed increases in the soil mechanical properties with the initial dry bulk density. The internal friction angle values measured with the triaxial compression apparatus exceeded those measured with the direct shear box. In contrast, the soil cohesion values measured with the direct shear box exceeded those measured with the triaxial compression apparatus. Under the triaxial compression test, the loose soil samples underwent contraction and volume reduction, whereas the dense samples swelled and failure cracks appeared clearly at various planes. The soil contraction for the former case characterizes the occurrence of soil compaction, whereas the cracks propagation and volume increase in the latter case characterizes the breaking up and loosening of soil during tillage operations. For the loose and moderately compacted states, the engineering Poisson's ratio increased with the axial strain until loading was completed. It also increased at the compacted and very compacted states until reaching given loading stages, after which its value started to decrease. This shifting in the engineering Poisson's ratio during loading may provide another identification of the moment of soil failure occurrence, in addition to that of the maximum shear stress.  相似文献   

10.
The sandwich plate twist test method involves torsion loading of a panel by application of concentrated loads at two diagonally opposite corners and supporting the panel at the other two corners. Compliance measured in this test can be used to extract the shear moduli of monolithic, composite and sandwich plates, and it may also be employed for determination of the twist stiffness, D 66 . Previous studies of the plate twist specimen have shown that classical laminated plate theory does not adequately predict the compliance of sandwich panels with a low density/modulus core, as a result of transverse shear deformation. This work proposes a “shear-corrected” model for accurate prediction of the plate twist compliance by incorporation of the transverse shear stiffnesses of the core. This model was used to extract the transverse shear modulus of a range of low density PVC foam cores from the measured panel twist compliance. Good agreement with published PVC foam core shear modulus values was obtained.  相似文献   

11.
Discrete element modeling was used to investigate the effect of particle size distribution on the small strain shear stiffness of granular soils and explore the fundamental mechanism controlling this small strain shear stiffness at the particle level. The results indicate that the mean particle size has a negligible effect on the small strain shear modulus. The observed increase of the shear modulus with increasing particle size is caused by a scale effect. It is suggested that the ratio of sample size to the mean particle size should be larger than 11.5 to avoid this possible scale effect. At the same confining pressure and void ratio, the small strain shear modulus decreases as the coefficient of uniformity of the soil increases. The Poisson’s ratio decreases with decreasing void ratio and increasing confining pressure instead of being constant as is commonly assumed. Microscopic analyses indicate that the small strain shear stiffness and Poisson’s ratio depend uniquely on the soil’s coordination number.  相似文献   

12.
This paper presents results from full-scale evaluations of an aluminum structural mat system with regard to carrying heavy aircraft across graded, but unimproved, soil with California Bearing Ratios (CBRs) of 6, 10, 15, 25, and 100. The objective was to determine relationships among soil deformation rate, the mat’s flexural modulus, the number of applied passes, and the underlying soil’s CBR. Current prevailing performance prediction models for aluminum mat systems are based on full-scale tests using historic aircraft loads over soils having a CBR of 4 that were never validated for soils with higher CBR values. Full-scale test results presented herein demonstrated the inability of current models to accurately predict mat permanent deformation. Strong correlations were found between measured and predicted data across the entire spectrum of soil CBRs. These relationships can be used to noticeably improve the accuracy of performance prediction models. An empirical equation was developed to reasonably predict subgrade deformation for any number of passes and soil CBR for the loading and mat system tested.  相似文献   

13.
This paper presents the fuzzy logic expert system (FLES) for an intelligent air-cushion tracked vehicle performance investigation operating on swamp peat terrain. Compared with traditional logic model, fuzzy logic is more efficient in linking the multiple units to a single output and is invaluable supplements to classical hard computing techniques. Therefore, the main purpose of this study is to investigate the relationship between vehicle working parameters and performance characteristics, and to evaluate how fuzzy logic expert system plays an important role in prediction of vehicle performance. Experimental values are taken in the swamp peat terrain for vehicle performance investigation. In this paper, a fuzzy logic expert system model, based on Mamdani approach, is developed to predict the tractive efficiency and power consumption. Verification of the developed fuzzy logic model is carried out through various numerical error criteria. For all parameters, the relative error of predicted values are found to be less than the acceptable limits (10%) and goodness of fit of the predicted values are found to be close to 1.0 as expected and hence shows the good performance of the developed system.  相似文献   

14.
A measurement technique of viscoelastic properties of polymers is proposed to investigate complex Poisson’s ratio as a function of frequency. The forced vibration responses for the samples under normal and shear deformation are measured with varying load masses. To obtain modulus of elasticity and shear modulus, the present method requires only knowledge of the load mass, geometrical characteristics of a sample, as well as both the amplitude ratio and phase lag of the forcing and response oscillations. The measured data were used to obtain the viscoelastic properties of the material based on a 2D numerical deformation model of the sample. The 2D model enabled us to exclude data correction by the empirical form factor used in 1D model. Standard composition (90% PDMS polymer + 10% catalyst) of silicone RTV rubber (Silastic® S2) were used for preparing three samples for axial stress deformation and three samples for shear deformation. Comprehensive measurements of modulus of elasticity, shear modulus, loss factor, and both real and imaginary parts of Poisson’s ratio were determined for frequencies from 50 to 320 Hz in the linear deformation regime (at relative deformations 10?6 to 10?4) at temperature 25 °C. In order to improve measurement accuracy, an extrapolation of the obtained results to zero load mass was suggested. For this purpose measurements with several masses need to be done. An empirical requirement for the sample height-to-radius ratio to be more than 4 was found for stress measurements. Different combinations of the samples with different sizes for the shear and stress measurements exhibited similar results. The proposed method allows one to measure imaginary part of the Poisson’s ratio, which appeared to be about 0.04–0.06 for the material of the present study.  相似文献   

15.
This paper deals with soil thrust exerted by a tracked vehicle. Measurements of the ground pressure beneath the tracks of a tracked vehicle were carried out and it was shown that the ground pressure distribution is approximately represented by discontinuous triangles which have their maxima under the roadwheels. The relationship between soil shear curve (shear stress or force-deformation curve) obtained from shear test and thrust curve (soil thrust-slip ratio curve) of the tracked vehicle is analyzed by using the above mentioned ground pressure distribution, and it is shown that there is a transformation law between both curves. Namely, the thrust curve due to soil shear under any wheel portion is given as a function of soil and vehicle parameters. Further, the reliability of the above method is confirmed experimentally.  相似文献   

16.
A modified shear lag analysis, taking into account the notion of stress perturbation function, is employed to evaluate the effect of transverse cracks on the stiffness reduction in [±θn/90m]S angle-ply laminated composites. Effects of number of 90° layers and number of ±θ layers on the laminate stiffness have also been studied. The present results represent well the dependence of the degradation of mechanical properties on the fibre orientation angle of the outer layers, the number of cracked cross-ply layers and the number of uncracked outer ±θ layers in the laminate.  相似文献   

17.
Simulating shear behavior of a sandy soil under different soil conditions   总被引:2,自引:0,他引:2  
Understanding of soil shear behavior is very important in the field of agricultural machinery and soil dynamics. In this study, a discrete element model was developed using a simulation tool, Particle Flow Code in Three Dimensions (PFC3D). The model simulates direct shear tests of soil and predicts soil shear behavior, in terms of shear forces and displacements. To determine and calibrate model parameters (stiffness of particles, strength and stiffness of bond between particles), laboratory direct shear tests were conducted to examine effects of soil moisture content and bulk density on shear behaviors of a sandy soil. Three soil moisture levels (0.02%, 13.0%, and 21.5%) and four bulk density levels (0.99, 1.28, 1.36, and 1.50 Mg/m3) were used in the tests. The test results showed that in general drier and denser soil conditions produced higher shear forces. Based on the test results, the bond strengths of the model particles were determined from soil cohesion and internal friction angle. The model particle stiffness was calibrated based on the yield forces from the tests. The calibrated particle stiffness varied from 1.0 × 103 to 8.2 × 103 N/m, depending on soil moisture and density levels. The bond stiffness calibrated was 1.0 × 107 Pa/m for all soil conditions.  相似文献   

18.
实际工程中的地基或路基的土体往往处于复杂初始应力状态,在地震或其他动荷载的作用下会出现变形和沉降,而常规的室内土工试验无法真实再现这种固结应力条件下土的动力特性。通过对原有的DTC 199型周期扭转荷载三轴仪进行简单的改造后可进行土体在主应力轴发生旋转时的压实黄土动变形的试验研究。结果表明,在其他固结条件不变的情况下,初始主应力方向角α对压实黄土的动剪切模量有一定的影响,随着α的增加,动剪切模量有减小的趋势,最大动剪应力也逐渐减小,但是α对最大动剪切模量的影响不太显著。初始主应力方向角α对压实黄土的阻尼比基本没有影响,在λ-lgγd的半对数坐标图中,阻尼比随动剪应变的增加有逐渐增大的趋势,并且表现出较好的相关性。  相似文献   

19.
A simplified method for estimating the soil thrust exerted by a tracked vehicle is proposed. The relationship between the soil shear torque curve (shear torque-deformation curve) obtained from ring shear test and the thrust curve (soil thrust-slip ratio curve) of a tracked vehicle is analyzed and it is shown that there is a transformation law between these curves. A simplified analytical method for estimating the soil thrust exerted by a tracked vehicle is developed by using the above-mentioned transformation law. Soil thrust can be estimated by using the soil shear torque curve, shear ring and vehicle parameters. It is experimentally confirmed that the soil thrust can be easily estimated by using the proposed method.  相似文献   

20.
Tungsten/copper (W/Cu) particle reinforced composites were used to investigate the scaling effects on the deformation and fracture behaviour. The effects of the volume fraction and the particle size of the reinforcement (tungsten particles) were studied. W/Cu-80/20, 70/30 and 60/40 wt.% each with tungsten particle size of 10 μm and 30 μm were tested under compression and shear loading. Cylindrical compression specimens with different volumes (DS = H) were investigated with strain rates between 0.001 s−1 and about 5750 s−1 at temperatures from 20 °C to 800 °C. Axis-symmetric hat-shaped shear specimens with different shear zone widths were examined at different strain rates as well. A clear dependence of the flow stress on the deformed volume and the particle size was found under compression and shear loading. Metallographic investigation was carried out to show a relation between the deformation of the tungsten particles and the global deformation of the specimens. The size of the deformed zone under either compression or shear loading has shown a clear size effect on the fracture of the hat-shaped specimens.The quasi-static flow curves were described with the material law from Swift. The parameters of the material law were presented as a function of the temperature and the specimen size. The mechanical behaviour of the composite materials were numerically computed for an idealized axis-symmetric hat-shaped specimen to verify the determined material law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号