首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hayez V  Costa V  Guillaume J  Terryn H  Hubin A 《The Analyst》2005,130(4):550-556
Studying the atmospheric corrosion of copper alloy artifacts is important to acquire a better knowledge about the condition of the object and its possible conservation and restoration. The nature of the formed product, e.g. sulfate, carbonate or chloride, depends on factors such as the amount of polluting elements or humidity but may also depend on the nature of the underlying aesthetic patina, applied by the artist. The composition of the patination solution and the method of patination will both influence the nature of this aesthetic patina, i.e. its chemical composition and morphology. However, although a lot of patination recipes exist, little is known about these patinas as far as composition, structure and ageing is concerned. Therefore, a combination of several surface analytical techniques is required for the complete characterization of patina layers. In this paper, Raman spectroscopy is used to study the characteristics of several patinas obtained on copper following different traditional recipes.  相似文献   

2.
Different analytical techniques were used for microstructural and compositional analysis of the ochre-coloured patinas that appear on the calcarenite substrate of monuments in the historical settings of Úbeda and Baeza (Spain). Optical microscopy, scanning electron microscopy–energy dispersive x-ray spectrometry (SEM-EDX), x-ray diffraction, Raman spectroscopy and attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR) were employed and a critical comparison of their experimental requirements, strengths and weaknesses is presented. The study focussed on two churches in Úbeda where patinas were widespread in ornamental elements. These films contained calcite as the principal component, and traces of dolomite and feldspars. Clear identification of calcium oxalate, mainly in the form of whewellite, was achieved by infrared and Raman spectroscopic studies. Results from texture, distribution and composition of the patinas in ornamental elements suggest that ancient treatments were applied for protection of Renaissance façades and consolidation of weathered older façades. The patinas were seldom found on supporting elements. Their different composition, apatite was found together with oxalates, and location may suggest a biogenic origin here. Gypsum crusts were sometimes found over the patinas.  相似文献   

3.
This study describes an analytical approach for the characterization and origin of the encrustation formed on the surface of monuments from the Acropolis in Athens. The morphology of encrustation was investigated by optical and scanning electronic microscopy. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray fluorescence (EDXRF) and scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDS) identify and quantify the key elements and compounds associated with the genesis of encrustation. Black crusts (>200 μm thick), consisting of gypsum, calcite and elements such as Si, Al, Fe, Pb, Ti, Zn and Mn, were being formed from interaction between the marble surface and atmospheric pollutants. Orange-brown accretions on the Parthenon, called patinas (∼150 μm thick), comprise calcite, calcium oxalates, low amount of S, and both in the inner and outer parts significant and almost constant amounts of Si, P and Fe; P and Fe identified as hydroxyapatite and hematite, respectively. In the Parthenon patinas, the EDS distribution maps of Si, Fe and P indicate an origin that may be attributed to the residue and transformation of ancient treatments rich in these elements. Patinas from the Erechtheum (∼100 μm thick) resemble plasters consisting of calcite, siliceous sand, hydroxyapatite, calcium oxalates and hematite. EDXRF highlighted the presence of Pb in the patinas from the Erechtheum; FTIR revealed that Pb is in the form of cerussite most probably from the use of attic ochre. The patinas from the Parthenon and Erechtheum, as opposed to black crusts, are associated with the best-preserved surfaces and should remain intact during conservation interventions.  相似文献   

4.
In the literature, the ability to transform metal compounds into metal oxalates has been reported for different species of fungi. This could be an innovative conservation method for archaeological and artistic metal artefacts. In fact, with a high degree of insolubility and chemical stability even in acid atmospheres (pH 3), metal oxalates provide the surface with good protection. Within the framework of the EU-ARTECH project, different fungal strains have been used to transform existing corrosion patinas on outdoor bronze monuments into copper oxalates, while preserving the physical appearance of these artefacts. Given the promising results obtained with this first attempt, the same approach is now applied within the BAHAMAS (Marie Curie Intra European Fellowship action) project, but extended to other metal substrates, for example iron and silver, which are frequently found in cultural heritage artworks and also encounter several problems of active corrosion. The research is investigating the formation mechanisms and adhesion properties of the newly formed metal oxalates by means of complementary analytical techniques (X-ray diffraction (XRD), FTIR microscopy, Raman microscopy, scanning electron microscopy (SEM-EDS), electrochemical impedance spectroscopy (EIS), colorimetry). For each metal substrate, the most appropriate fungal strain is going to be identified and applied to corroded sheets and the novel fungal treatment compared with those used so far. Treated metal sheets will be monitored during 1-year exposure to different cycles of artificial ageing, to evaluate the corrosion resistance of the fungal patinas obtained. The objective of this contribution is to present the first results achieved so far on naturally corroded bronze sheets during the EU-ARTECH project and the analytical procedure used for the testing of the proposed treatment performances during the BAHAMAS project.  相似文献   

5.
This paper presents an integrated study on nine natural Chinese bronze patinas without causing any damage to the bronze substrates, employing five modern analytical techniques including X‐ray diffraction (XRD), Fourier transform infrared (FT‐IR) and Raman spectroscopy, inductively coupled plasma atomic emission spectroscopy (ICP‐AES), and inductively coupled plasma mass spectrometry (ICP‐MS). Two artificial Chinese bronze patinas were also investigated by the same techniques for comparative purposes. As a result, XRD determined the chemical compositions of all selected samples and showed that the primary compound was malachite in natural soil environment under the general situation. Meanwhile, some interesting corrosion products such as gerhardtite and free copper were also observed. Three groups were classified according to the XRD results in order to provide a deeper insight into their spectroscopic characterization. Spectroscopic data of these patinas from FT‐IR and Raman spectroscopy are shown and interpreted in detail. ICP‐AES and ICP‐MS analyses provided valuable quantitative information, and made the study of the patinas more profound. Furthermore, all analytical results indicated that bronze patinas are extremely complex by virtue of the storage environment and their substrate alloys. The natural samples were rather heterogeneous and the artificial samples, especially the sample formed in the laboratory, were rather homogeneous of which the chemical constituents could be well defined. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Ion beam analysis (IBA) techniques were applied successfully to the investigation of non‐corroded and artificially corroded patina layers grown on copper substrates in order to explore their potential use in the study of degradation phenomena of copper and copper alloys subjected to chemical treatment and exposed to selected environmental conditions. Rutherford backscattering spectroscopy (RBS) with deuterons as projectiles and the nuclear reactions 16O(d,p)17O and 32S(p,p′γ)32S were applied to the investigation of the depth distribution of oxygen and sulphur in near‐surface layers of synthetic patina consisting of mineral phases corresponding to chalcanthite as well as to cuprite + chalcanthite and antlerite + brochantite + chalcanthite. Electrochemical techniques (potentiodynamic polarization and cyclic voltammetry in 0.5 M Na2SO4) were used for artificial acceleration and study of the corrosion processes, and scanning electron microscopy (SEM/EDS) was used for examination of the surface morphology of the samples. A patinated roof sample from the Vienna Hofburg also was investigated using the same techniques. The measurement showed that IBA can provide valuable information for the study of patina near‐surface layers of thickness up to a few micrometres and indicated that cuprite was the mineral phase primarily formed on the copper substrates and the main component of the interface between the patina layer and the metallic substrate. The investigated copper patinas looked rather heterogeneous and were characterized by high porosity. Mixed patinas exhibited considerable stability to further corrosive attack. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Colonisation of wall paintings by microorganisms and other organisms is a well-known problematic phenomenon. Besides taxonomic identification of the biodeteriogen, it is essential to evaluate the consequences of the colonisation, e.g., unsightly coloured patinas. This work proposes new methodology for characterisation of the nature of the main carotenoids and their distribution in brown stains or patinas of a deteriorated wall painting on the north wall of the atrium of Marcus Lucretius House (Pompeii, Italy). Characterisation of the brown patinas and surrounding areas (plaster and polychromy) from the wall painting started with in situ screening using, mainly, a portable Raman instrument with a handheld FTIR (DRIFTS sampling interface) in order to select the sampling areas suitable for further analysis in the laboratory. Two wall painting fragments were then analysed in the laboratory in two steps. First, microscopic observations (SEM and phase-contrast microscopy) were used to determine whether biodeteriogens were present in the samples. In a second step, confocal Raman microscopy (785 and 514 nm excitation lasers) was used to characterise the main biogenic compounds of the brown stains. Because of the resonance Raman effect (514 nm excitation laser), it was possible to obtain reliable Raman features to assign not only the nature of the main biogenic pigments (carotenoids) present in the stains, but also their spatial conformation. Moreover, Raman confocal applications, for example, Raman imaging and depth profiling were also used in a first attempt to determine the distribution of biosynthesised carotenoids in the stains, and to determine the thickness of the brown patinas.  相似文献   

8.
This article reports on a compositional investigation of stone patinas: thin colored layers applied for protective and/or aesthetic purposes on architectural or sculptural substrates of cultural heritage. The analysis and classification of patinas provide important information of historic and artistic interest, as their composition reflects local practices, the availabilities of different materials, and the development of technological knowledge during specific historical periods. Model patinas fabricated according to traditional procedures and applied onto limestone, and a historic patina sample from the main façade of the San Blas Monastery in Lerma (a village in the province of Burgos, Spain), were analyzed by laser-induced fluorescence and Fourier transform Raman spectroscopy. The results obtained demonstrate the ability of these two analytical techniques to identify the key components of each formulation and those of the reaction products which result from the chemical and mineralogical transformations that occur during aging, as well as to provide information that can aid the classification of different types of patinas.
Figure Cross section of model patina (left) and FT-Raman spectrum of historic patina from the façade of San Blas Monastery, Lerma, Burgos, Spain (right).
  相似文献   

9.
New applications of micro-Raman spectroscopy are presented here for the investigation of colouring agents in a wax model of plant and of corrosion products on metal artworks. A late 1700 wax model of Camellia japonica L. was studied in order to characterise the nature of white, red and green colours of petals and leaves. White and red colours of petals were identified as pigments of baryte and a mixture of cinnabar and carmine lake, respectively. Fragments taken from leaves with different green hues were also studied; only yellow grains were isolated in this case which were identified as orpiment and yellow chrome. The applicability of micro-Raman spectroscopy to the study of corrosion products on metal objects is presented here for iron archaeological artefacts and for lead samples taken from the cupolas of the Consolata Sancturay in Turin. Analysis of blackish and reddish corrosion patinas entirely covering the archaeological iron objects led to the identification of magnetite and maghemite, goethite and lepidocrocite, respectively. As to lead fragments, the main corrosion product was lead sulphate, and minor amounts of lead carbonate, nitrate and oxide (litharge) were also found.  相似文献   

10.
The formation of dark patinas has been mainly related with deposition of gases and particles, and sulphation mechanisms particularly in calcareous rocks. However, in granitic monuments located in Galicia (northwest of Spain), especially in rural areas, this origin is unlikely since granite is a very poor calcium-containing rock and the atmospheric pollution in this area is negligible. A biological origin seems to be most probable. In order to know the importance of biological and atmospheric factors in the formation of dark patinas on granitic monuments, a number of analyses using several techniques are needed. The characterization of fatty acids in patinas by gas chromatography has established clear differences among samples. Thus, all of the samples having a biological origin displayed a similar fatty acid pattern, with unsaturated fatty acids predominating, especially oleic and linoleic acids; these were followed in abundance by the branched fatty acid 18:00 anteiso, and palmitic acid. Different patterns of fatty acid allowed establishment of an anthropogenic origin of the some of the patinas analysed.  相似文献   

11.
Fortunato G  Ritter A  Fabian D 《The Analyst》2005,130(6):898-906
White lead (2PbCO(3).Pb(OH)(2)), a common component in 17c. artists' painting materials, was singled out to investigate the potential of lead isotope abundance ratios in the field of authentication and origin assignment. Paintings by Peter Paul Rubens, Anthony van Dyck and other Old Masters of the Northern and Southern schools were chosen for this study. An interdisciplinary approach was chosen using both analytical instrumental methods, art technological and art historical knowledge. Minute samples taken from paintings from selected art collections worldwide were investigated using mass spectrometry, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The high precision lead isotope abundance ratios were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The determination of the calcium matrix influence with respect to possible bias effects to the isotope ratios gave clear decision support, to whether a result lies within the stated combined measurement uncertainty of the result, to eliminate time-consuming matrix separations. The scatter plots of the measured isotope abundance ratios for the painting pigments from P. P. Rubens, A. van Dyck and other Flemish painters exhibit a very narrow distribution forming a cluster. The range of the measured ratio (206)Pb/(204)Pb amounts to 0.55% and for the ratio (207)Pb/(204)Pb to 0.2%. The comparison of the data to cis-alpine (Italian) sample pigments from paintings from the same time period reveals a clear distinction between the two fields. With respect to the lead isotope data originating from the ores it is assumed that the pigment isotope ratio distribution can be explained by very distinct origin of raw materials. Presumably, no mixing of different lead ores from Europe took place. The comparison of the measured white lead isotope ratio values (Flemish paintings) and the data from ore samples led to the unexpected conclusion that local ores were not used for the pigment production but British or German sources.  相似文献   

12.
In order to elucidate the potential mechanisms involved in the biosorption of metal ions, atomic force microscopy (AFM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize the interaction between Pb2+ and Bacillus cereus. AFM imaging of the biomass surfaces exposed to different concentrations of lead ions solution showed a major morphological change occurred after Pb2+ biosorption. The FT-IR spectra indicated the binding characteristics of the lead ions involved the carboxyl, hydroxyl and amino groups in the biomass. Equilibrium biosorption experiments of Pb2+ were carried out to investigate the effects of pH values and the initial metal concentrations. The experimental isotherm data were then modeled using Langmuir, Freundlich, and Redlich-Peterson isotherm equations. As a result, the Redlich-Peterson model yielded the best fit of experimental data. Kinetics experiments showed the biosorption was a rapid process and the pseudo-second-order model was successfully applied to predict the rate constant of biosorption.  相似文献   

13.
Self-assembly of C(60), single-walled carbon nanotubes (SWNTs) and few-layer graphene at the toluene-water interface has been investigated, starting with different concentrations of the nanocarbons in the organic phase and carrying out the assembly to different extents. Morphologies and structures of the films formed at the interface have been investigated by electron microscopy and other techniques. In the case of C(60), the films exhibit hcp and fcc structures depending on the starting concentration in the organic phase, the films being single crystalline under certain conditions. Self-assembly of the composites formed by pairs of nanocarbons (C(60)-SWNT, C(60)-few-layer graphene and SWNT-few-layer graphene) at the interface has been studied by electron microscopy. Raman spectroscopy and electronic absorption spectroscopy of the films formed at the interface have revealed the occurrence of charge-transfer interaction between SWNTs and C(60) as well as between few-layer graphene and C(60).  相似文献   

14.
Laser-induced breakdown spectroscopy (LIBS) was used in combination with Raman microscopy, for the identification of pigments in different types of painted works of art. More specifically, a 19th century post-Byzantine icon from Greece and two miniature paintings from France were examined and detailed spectral data are presented which lead to the identification of the pigments used. LIBS measurements yielded information on the presence of pigments or mixtures of pigments based on the characteristic emission from specific elements. Identification of most pigments was performed by Raman microscopy. As demonstrated in this work, the combined use of LIBS and Raman microscopy, two complementary techniques, leads to a detailed characterization of the paintings examined with respect to the pigments used.  相似文献   

15.
The chemical reactions of aqueous solutions containing simple transition-metal salts and bidentate nitrogen ligands on bronze surfaces results in a series of brightly coloured patinas. Chemically and physically robust patinas involve a chemical oxidation of the copper atoms within the bronze surface, either by an applied ferric salt or atmospheric dioxygen. The combination of Fe(NO(3))(3)·9H(2)O and 2,2'-bipyridine produces a coloured patina that is either red or blue, depending on whether oxygen was present during application, due to the presence of [Fe(bpy)(3)](2+) or [Fe(bpy)(3))](3+), respectively. Application of pyrazine produces a bright orange patina, due to the formation of Cu(i) coordination polymers on the bronze surface. Application of Fe(NO(3))(3)·9H(2)O and tetramethylethylenediamine (TMEDA) yields a forest green coloration, believed to be due to a bimetallic copper-iron complex, while TMEDA alone affords the sapphire blue of [Cu(TMEDA)(2)](2+). These patinas were characterized with ESI-TOF MS, UV-Vis spectrophotometry, and IR spectrophotometry, to determine the molecular basis for the patina chromophores.  相似文献   

16.
Structures of surface hydroxyl groups arranged on a reduced TiO2(110) surface that had line oxygen vacancies were studied using noncontact atomic force microscopy (NC-AFM). NC-AFM results revealed that by increasing the density of oxygen vacancies on the TiO2(110) surface, line oxygen vacancies were formed by removal of oxygen atoms in a bridge oxygen row on the TiO2(110) surface. After the TiO2(110) surface with the line oxygen vacancies was exposed to water, the surface showed hydroxyl chain structures that were composed of hydroxyl groups linearly arranged in a form of two rows on the line oxygen vacancies and on a neighboring bridge oxygen row. In-situ NC-AFM measurements of these surfaces exposed to water at room temperature revealed that hydroxyl chain structures were formed at the line oxygen vacancy. Annealing above 500 K was sufficient to remove the hydroxyl chain structures on the TiO2(110) surface and allowed line oxygen vacancies to reappear on the surface. The line oxygen vacancies are active sites for water dissociation. In conclusion, the formation of the hydroxyl chain structure suggests that the surface hydroxyl groups on a TiO2(110) surface can be controlled by preparing oxygen vacancy structures on the surface.  相似文献   

17.
Sputtered oxidized molybdenum surfaces were exposed at room temperature for different times to paraffin vapors obtained at 150 degrees C. Scanning polarization force microscopy (SPFM), optical and confocal microscopy were used to characterize the surfaces. The condensed morphologies are complex and strongly dependent upon the quantity of vapor molecules deposited on the substrate surface. A thin paraffin film is initially formed and quite uniform nano-height drops are nucleated randomly over it within 10-20 s time exposures. Their average contact angle ranged between 1 degrees -2.5 degrees . Further vapor deposition led to a more complex regime where nano-height drops do not show a clear interface with the film, while micro-sized drops do. The tangent approximation method adopted by Salmeron and Xu for the nano-drop regimes was extended to the micro-sized drop regime obtaining an averaged effective contact angle equal to 4 degrees -5 degrees . Both nano-height and micro-sized drops shape and effective contact angles have been discussed taking into account their interactions between the film and the drops.  相似文献   

18.
PbS nanostructures with different morphologies, such as rod-like, belt-like, downy-velvet-flower-like and dendrite-like, were fabricated successfully under varied reaction conditions in aqueous solution at lower temperature by the assistance of surfactant CTAB. Especially, among all the synthesis methods for PbS nanocrystals, this is the first report using basic acetate of lead, which was formed at initial reaction stage, as a precursor to control the crystal nucleation rate. This synthesis method is a promising one to metal sulfide for its easy control, low-cost and large-scale production. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), field-emission scanning electron microscopy (FE-SEM) and UV-visible spectrophotometer (UV-vis) were used to characterize the products. A rational mechanism is proposed and three control factors to the crystal directional growth are also concluded.  相似文献   

19.
 Patinas naturally formed on archaeological bronze alloys were characterized using light microscopy (LM), micro energy dispersive X-ray fluorescence analysis (μ-EDXRF), time of flight secondary ion mass spectrometry (TOF-SIMS) and scanning electron microscopy in combination with energy dispersive X-ray microanalysis (SEM/EDX). The examinations carried out on cross-sections of samples have shown that in all samples the copper content in the corrosion layer is lower than in the bulk, while an increase of tin and lead could be observed. Two different types of corrosion were found: first type, a corrosion formation leading to a three layer structure was observed on lead bronze. The outer layer consists mainly of Cu(II) compounds and soil material, followed by a fragmented layer of cuprous oxide and the surface layer of the alloy, where a depletion of copper and an enrichment of tin and high amounts of Cl could be detected. The second type of corrosion is characterized by a two layer structure on the tin bronze sample consisting of an outer layer with copper containing corrosion products and a layer with cracks, which reveals a depletion of copper whereas tin and lead are enriched. Also high amounts of Si were detected in this surface layer.  相似文献   

20.
A multi-analytical approach was used to investigate Roman lead-glazed ceramic artefacts from archaeological excavations at Pompeii and Herculaneum (Italy) aiming at defining the production technology of both glaze and ceramic body, by way of integrated investigations. The chemical, structural, and micro-morphological characterisations were performed using a combination of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), optical microscopy (OM), scanning electron microscopy (SEM), and micro-Raman spectroscopy. Fragments of artefacts (skyphoi, oil lamps, bowls, askoi, amphorae, krateres) of great historical and archaeological interest were sampled. LA-ICP-MS was used to determine the elemental composition by virtue of its effective lateral resolution, its ability to detect most elements and also to analyse comparably small samples. All the archaeological objects were coated with a lead-based glaze produced using a lead oxide-plus-quartz mixture, with sodium/potassium feldspars added as a flux and two different metals used: copper and iron. Two types of ceramic pastes have been identified, but chemometric techniques support the hypothesis of a Campanian provenance for the raw materials. Degradation phenomena such as the partial devitrification of the glaze, i.e. the slow structural reorganisation towards stable crystalline phases, and the leaching by mineral dissolution in the soil, were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号