首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new DNA hybridization analytical method using a microfluidic channel and a molecular beacon-based probe (MB-probe) is described. A stem-loop DNA oligonucleotide labeled with two fluorophores at the 5′ and 3′ termini (a donor dye, TET, and an acceptor dye, TAMRA, respectively) was used to carry out a fast and sensitive DNA analysis. The MB-probe utilized the specificity and selectivity of the DNA hairpin-type probe DNA to detect a specific target DNA of interest. The quenching of the fluorescence resonance energy transfer (FRET) signal between the two fluorophores, caused by the sequence-specific hybridization of the MB-probe and the target DNA, was used to detect a DNA hybridization reaction in a poly(dimethylsiloxane) (PDMS) microfluidic channel. The azoospermia gene, DYS 209, was used as the target DNA to demonstrate the applicability of the method. A simple syringe pumping system was used for quick and accurate analysis. The laminar flow along the channel could be easily controlled by the 3-D channel structure and flow speed. By injecting the MB-probe and target DNA solutions into a zigzag-shaped PDMS microfluidic channel, it was possible to detect their sequence-specific hybridization. Surface-enhanced Raman spectroscopy (SERS) was also used to provide complementary evidence of the DNA hybridization. Our data show that this technique is a promising real-time detection method for label-free DNA targets in the solution phase. Figure FRET-based DNA hybridization detection using a molecular beacon in a zigzag-shaped PDMS microfluidic channel  相似文献   

2.
We have monitored the reaction dynamics of the DNA hybridization process on a liquid/solid interface at the single-molecule level by using a hairpin-type molecular beacon DNA probe. Fluorescence images of single DNA probes were recorded by using total internal reflection fluorescence microscopy. The fluorescence signal of single DNA probes during the hybridization to individual complementary DNA probes was monitored over time. Among 400 molecular beacon DNA probes that we tracked, 349 molecular beacons (87.5 %) were hybridized quickly and showed an abrupt fluorescence increase, while 51 probes (12.5 %) reacted slowly, resulting in a gradual fluorescence increase. This ratio stayed about the same when varying the concentrations of cDNA in MB hybridization on the liquid/surface interface. Statistical data of the 51 single-molecule hybridization images showed that there was a multistep hybridization process. Our results also showed that photostability for the dye molecules associated with the double-stranded hybrids was better than that for those with the single-stranded molecular beacon DNA probes. Our results demonstrate the ability to obtain a better understanding of DNA hybridization processes using single-molecule techniques, which will improve biosensor and biochip development where surface-immobilized molecular beacon DNA probes provide unique advantages in signal transduction.  相似文献   

3.
Fluorescence resonance energy transfer has been used to illustrate its applicability to the sensitive detection of DNA hybridization reactions in a PDMS microfluidic channel.  相似文献   

4.
A double-labelled synthetic oligonucleotide is used as a fluorescent molecular aptamer beacon for the reagentless determination of total hardness in tap and bottled waters. Modified thrombin binding aptamer (5′-NH-C3-GGTTGGTGTGGTTGG-C3-SH-3′) carrying 6-carboxyfluorescein (FAM) and 7-amino-4-methyl-coumarin labels at 5′ and 3′, respectively, was used for the simultaneous combined measurement of Mg2+ and Ca2+ cations. Interference from the K+ cation is eliminated via selective tuning of the assay conditions, increasing the temperature beyond the melting point of the potassium-stabilised quadruplex facilitating its liberation from the quadruplex, whilst maintaining the integrity of the magnesium/calcium-stabilised structure. No interference from other cations found in tap or bottled water was observed. The detection limit of the aptamer beacon is 0.04 mmol L−1, with a dynamic linear range of 0-0.5 μM and is very reproducible, with an R.S.D. = 8%, n = 3. The fluorescent molecular beacon is applied to the determination of total hardness in tap and bottled waters and its’ performance compared to that of the standard method of complexiometric titration and atomic absorption spectroscopy, with an excellent correlation observed. Further work is focused on the immobilization of the aptamer for the development of a re-usable fluorescent/electrochemical aptasensor, for the determination of water hardness.  相似文献   

5.
Applicability of polydimethylsiloxane (PDMS) for easy and rapid fabrication of enzyme sensor chips, based on electrochemical detection, is examined. The sensor chip consists of PDMS substrate with a microfluidic channel fabricated in it, and a glass substrate with enzyme-modified microelectrodes. The two substrates are clamped together between plastic plates. The sensor chip has shown no leakage around the microelectrodes under continuous solution flow (34 μl/min). Amperometric response of the sensor chips developed in this work suggest that various types of enzyme sensors can be designed by using PDMS microfluidic channels.  相似文献   

6.
Sheng Y  Bowser MT 《The Analyst》2012,137(5):1144-1151
A microfluidic counter current dialysis device for size based purification of DNA is described. The device consists of two polydimethylsiloxane (PDMS) channels separated by a track etched polycarbonate membrane with a 50 nm pore size. Recovery of fluorescein across the membrane was compared with 10 and 80 nucleotide (nt) ssDNA to characterize the device. Recovery of all three analytes improved with decreasing flow rate. Size selectivity was observed. Greater than 2-fold selectivity between 10 nt and 80 nt ssDNA was observed at linear velocities less than 3mm s(-1). Increasing the ionic strength of the buffer increased transport across the membrane. Recovery of 80 nt ssDNA increased over 4-fold by adding 30 mM NaCl to the buffer. The effect was size dependent as 10 nt showed a smaller increase while the recovery of fluorescein was largely unaffected by increasing the ionic strength of the buffer.  相似文献   

7.
Based on the standard phosphoramidites chemistry protocol, two oligonucleotides synthetic routes were studied by contact stamping reactants to a modified glass slide. Route A was a contact coupling reaction, in which a nucleoside monomer was transferred and coupled to reactive groups (OH) on a substrate by spreading the nucleoside activated with tetrazole on a polydimethylsiloxane (PDMS) stamp. Route B was a contact detritylation, in which one nucleoside was fixed on the desired synthesis regions where dimethoxytrityl (DMT) protecting groups on the 5'-hydroxyl of the support-bound nucleoside were removed by stamping trichloroacetic acid (TCA) distributed on features on a PDMS stamp. Experiments showed that the synthetic yield and the reaction speed of route A were higher than those of route B. It was shown that 20 mer oligonucleo-tide arrays immobilized on the glass slide were successfully synthesized using the PDMS stamps, and the coupling efficiency showed no difference between the PDMS stamping and the co  相似文献   

8.
Based on the standard phosphoramidites chemistry protocol, two oligonucleotides synthetic routes were studied by contact stamping reactants to a modified glass slide. Route A was a contact coupling reaction, in which a nucleoside monomer was transferred and coupled to reactive groups (OH) on a substrate by spreading the nucleoside activated with tetrazole on a polydimethylsiloxane (PDMS) stamp. Route B was a contact detritylation, in which one nucleoside was fixed on the desired synthesis regions where dimethoxytrityl (DMT) protecting groups on the 5’-hydroxyl of the support-bound nucleoside were removed by stamping trichloroacetic acid (TCA) distributed on features on a PDMS stamp. Experiments showed that the synthetic yield and the reaction speed of route A were higher than those of route B. It was shown that 20 mer oligonucleotide arrays immobilized on the glass slide were successfully synthesized using the PDMS stamps, and the coupling efficiency showed no difference between the PDMS stamping and the conventional synthesis methods.  相似文献   

9.
Yea KH  Lee S  Kyong JB  Choo J  Lee EK  Joo SW  Lee S 《The Analyst》2005,130(7):1009-1011
Rapid and highly sensitive trace analysis of cyanide water pollutant in an alligator teeth-shaped PDMS microfluidic channel was investigated using surface-enhanced Raman spectroscopy. Compared with previously reported analytical methods, the detection sensitivity was enhanced by several orders of magnitude.  相似文献   

10.
Lee HH  Smoot J  McMurray Z  Stahl DA  Yager P 《Lab on a chip》2006,6(9):1163-1170
A recirculating microfluidic device fabricated by laminating Mylar and glass was developed for the analysis of hybridization of oligonucleotides to DNA microarrays. The device is part of a system that provides controlled hybridization to DNA probes immobilized in a microarray of polyacrylamide gel pads using recirculation and temperature control. The system was used to obtain real-time kinetics of DNA hybridization and more accurate melting profiles of target-probe duplexes than possible using a static hybridization format. Recirculation shortened the time of perfect match target-probe hybridization from 6 hours to 2 hours and shifted the Td by 1.54 degrees C, relative to static conditions. The experimental results were consistent with a three-dimensional simulation of hybridization using a recirculating buffer system.  相似文献   

11.
In most of the currently developed electrochemical DNA hybridization sensors short single-stranded probe DNA is immobilized on an electrode and both the hybridization and detection steps are carried out on the electrode surface. Here we use a new technology in which DNA hybridization is performed on commercially available magnetic beads and detection on solid electrodes. Paramagnetic Dynabeads Oligo(dT)25 (DBT) with covalently bound (dT)25 probe are used for the hybridization with target DNA containing adenine stretches. Target DNA is modified with osmium tetroxide,2,2′-bipyridine (Os,bipy) and the immunogenic DNA-Os,bipy adduct is determined by the enzyme-linked immunoassay with electrochemical detection. Electroinactive 1-naphthyl phosphate is used as a substrate and the electroactive product (1-naphthol) is measured on the carbon electrodes. Alternatively Os,bipy-modified target DNA can be determined directly by measuring the osmium signal on the pyrolytic graphite electrode (PGE). A comparison between determinations of the 67-mer oligodeoxynucleotide on carbon electrodes using (a) the guanine oxidation signal, (b) direct determination of the DNA-Os,bipy adduct and (c) its electrochemical immunoassay showed immunoassay to be the most sensitive method. In combination with DBT, the DNA hybridization of long target deoxyoligonucleotides (such as 67- and 97-mers) and a DNA PCR product (226-base pairs) have been detected by immunoassay at high sensitivity and specificity.  相似文献   

12.
G-quenched MBs are devised from readily available starting materials and used for sequence specific DNA detection with high efficiency.  相似文献   

13.
A rapid and highly sensitive trace analysis technique for determining malachite green (MG) in a polydimethylsiloxane (PDMS) microfluidic sensor was investigated using surface-enhanced Raman spectroscopy (SERS). A zigzag-shaped PDMS microfluidic channel was fabricated for efficient mixing between MG analytes and aggregated silver colloids. Under the optimal condition of flow velocity, MG molecules were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower zigzag-shaped PDMS channel. A quantitative analysis of MG was performed based on the measured peak height at 1615 cm−1 in its SERS spectrum. The limit of detection, using the SERS microfluidic sensor, was found to be below the 1–2 ppb level and this low detection limit is comparable to the result of the LC-Mass detection method. In the present study, we introduce a new conceptual detection technology, using a SERS microfluidic sensor, for the highly sensitive trace analysis of MG in water.  相似文献   

14.
The fabrication and performance of a microfluidic device with integrated liquid-core optical waveguides for laser induced fluorescence DNA fragment analysis is presented. The device was fabricated through poly(dimethylsiloxane) (PDMS) soft lithography and waveguides are formed in dedicated channels through the addition of a liquid PDMS pre-polymer of higher refractive index. Once a master has been fabricated, microfluidic chips can be produced in less than 3 h without the requirement for a cleanroom, yet this method provides an optical system that has higher performance than a conventional confocal optical assembly. Optical coupling was achieved through the insertion of optical fibers into fiber-to-waveguide couplers at the edge of the chip and the liquid-fiber interface results in low reflection and scattering losses. Waveguide propagation losses are measured to be 1.8 dB cm(-1) (532 nm) and 1.0 dB cm(-1) (633 nm). The chip displays an average total coupling loss of 7.6 dB due to losses at the optical fiber interfaces. In the electrophoretic separation and detection of a BK virus PCR product, the waveguide system achieves an average signal-to-noise ratio of 570 +/- 30 whereas a commercial confocal benchtop electrophoresis system achieves an average SNR of 330 +/- 30. To our knowledge, this is the first time that a waveguide-based system has been demonstrated to have a SNR comparable to a commercially available confocal-based system for microchip capillary electrophoresis.  相似文献   

15.
Nanomaterials have been used increasingly in a wide variety of applications, and some of them have shown toxic effects on experimental animals and cells. In this study, a previously established photoelectrochemical DNA sensor was employed to rapidly detect DNA damage induced by polystyrene nanosphere (PSNS) suspensions. In the sensor, a double-stranded DNA film was assembled on a semiconductor electrode, and a DNA intercalator, Ru(bpy)2(dppz)2+ (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine...  相似文献   

16.
Arata H  Komatsu H  Han A  Hosokawa K  Maeda M 《The Analyst》2012,137(14):3234-3237
We present a new method for rapid microRNA detection with a small volume of sample using the power-free microfluidic device driven by degassed PDMS. Target microRNA was detected by sandwich hybridization taking advantage of the coaxial stacking effect. This method allows us to detect miR-21 in 20 min with a 0.5 μL sample volume at a limit of detection of 0.62 nM. Since microRNAs can act as cancer markers, this method might substantially contribute to future point-of-care cancer diagnosis.  相似文献   

17.
Liu L  Tang Z  Wang K  Tan W  Li J  Guo Q  Meng X  Ma C 《The Analyst》2005,130(3):350-357
NAD(+)-dependent DNA ligase has been widely used in gene diagnostics for disease-associated mutation detection and has proved to be necessary for screening bactericidal drugs targeted to DNA ligases. However, further research has been restricted since conventional ligase assay technology is limited to gel electrophoresis, which is discontinuous, time-consuming and laborious. An innovative approach is developed for monitoring the activity of E. coli DNA ligase catalyzing nucleic acid ligation in the report. This approach utilizes a molecular beacon hybridized with two single-stranded DNA (ssDNA) segments to be ligated to form a hybrid with a nick, and could therefore be recognized by the enzyme. Ligation of the two ssDNA segments would cause conformation changes of the molecular beacon, leading to significant fluorescence enhancement. Compared to gel electrophoresis, this approach can provide real time information about ligase, is more time efficient, and is easier to use. The effect of quinacrine, a drug for malaria, on the activity of the ligase is detected, thereby certifying the capability of the method for developing novel antibacterial drugs targeted at NAD(+)-dependent ligase. The fidelity of strand joining by the ligase is examined based on this approach. The effects of external factors on activity of the ligase are analyzed, and then an assay of E. coli DNA ligase is performed with a broad linear range of 4.0 x 10(-4) Weiss Unit mL(-1) to 0.4 Weiss Unit mL(-1) and the detection limit of 4.0 x 10(-4) Weiss Unit mL(-1).  相似文献   

18.
A solid-state electrochemiluminescence (ECL) biosensing switch based on special ferrocene-labeled molecular beacon (Fc-MB) has been successfully developed for T4 DNA ligase detection. Such special switch system consisted of two main parts, an ECL substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Au nanoparticle and Ruthenium (II) tris-(bipyridine) (Ru(bpy)32+-AuNPs) onto Au electrode. A molecular beacon labeled by ferrocene as the ECL intensity switch. The molecular beacon is designed with special base sequence, which could combine with its target biomolecule via the reaction of the repair and recombination of nucleic acids by DNA ligase. During the reaction, the molecular beacon opened its stem-loop, and the labeled Fc was consequently kept away from the ECL substrate. Such structural change resulted in an obvious increment in ECL intensity due to the decreased Fc quenching effect to the ECL substrate. The analysis results are sensitive and specific.  相似文献   

19.
We inserted a fluorene-labeled deoxyuridine derivative, synthesized using Sonogashira coupling, efficiently into the loop region of a DNA hairpin using phosphoramidite chemistry. This molecular beacon, which features no additional fluorescence quencher, discriminates between perfect and one-base-mismatched base pairing by changes in its fluorescence intensity. The discrimination factor is 14.7 for the recognition of a single (A/C) base mismatch.  相似文献   

20.
Chen B  Zhou X  Li C  Wang Q  Liu D  Lin B 《Journal of chromatography. A》2011,1218(14):1907-1912
We herein present a compact disc (CD) microfluidic chip based hybridization assay for phenylketonuria (PKU) screening. This CD chip is composed of a polydimethylsiloxane (PDMS) top layer containing 12 DNA hybridization microchannels, and a glass bottom layer with hydrogel pad conjugated DNA oligonucleotides. Reciprocating flow was generated on the CD chip through a simple rotation-pause operation to facilitate rapid DNA hybridization. When rotated the CD chip, the sample solution was driven into the hybridization channel by centrifugal force. When stopped the CD chip, the sample plug was pulled backward through the channel by capillary force. The hybridization assay was firstly validated with control samples and was then used to analyze 30 clinical samples from pregnant women with suspected PKU fetus. The on-chip DNA hybridization was completed in 15 min with a sample consumption as low as 1.5μL, and the limit-of-detection (LOD) of DNA template was 0.7ng/μL. Among the 30 samples tested, V245V mutation was identified in 4 cases while R243Q mutation was detected in one case. Results of the hybridization assay were confirmed by DNA sequencing. This CD-chip based hybridization assay features short analysis time, simple operation and low cost, thus has the potential to serve as the tool for PKU screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号