首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Emission from charge recombination between radical cations and anions of various tetrakis(arylethynyl)benzenes (TAEBs) was measured during pulse radiolysis in benzene (Bz). The formation of TAEB in the excited singlet state ((1)TAEB*) can be attributed to the charge recombination between TAEB (*+) and TAEB (*-), which is initially generated from the radiolytic reaction. It was found that the charge recombination between TAEB (*+) and TAEB (*-) gave (1)TAEB* as the emissive species but not excimers because of the large repulsion between substituents caused by the rotation around C-C single bonds. Since donor-/acceptor-substituted TAEBs possess three types of charge-transfer pathways (linear-conjugated, cross-conjugated, and "bent"-conjugated pathways between the donor and acceptor substituents through the ethynyl linkage), the emission spectra of (1)TAEBs* with intramolecular charge transfer (ICT) character depend on the substitution pattern and the various types of donor and acceptor groups during pulse radiolysis. Through control of the substitution pattern (e.g., the position of the nitrogen atom within the pyridine ring or the number of acceptors per arene ring of the regioisomeric donor-/acceptor-substituted TAEBs with donating N, N-dibutylamino and accepting pyridine unit (N1-9) and those with donating N, N-dibutylamino and accepting one (F1-3), two trifluoromethyl (F4-6), or perfluorinated arene (F7-9) units), fine-tuning of radiolysis induced emission color can be achieved.  相似文献   

2.
Photoinduced charge-separation and charge-recombination processes of fullerene[60] dyads covalently connected with phenothiazine and its trimer (PTZ n -C 60, n = 1 and 3) with a short amide linkage were investigated. A time-resolved fluorescence study provided evidence of charge separation via the excited singlet state of a C 60 moiety ( (1)C 60*), which displayed high efficiencies in various solvents; Phi (S) CS (quantum yield of charge separation via (1)C 60*) = 0.59 (toluene) to 0.87 (DMF) for PTZ 1-C 60 and 0.78 (toluene) to 0.91 (DMF) for PTZ 3-C 60. The transient absorption measurement with a 6 ns time resolution in the visible and near-IR regions showed evidence of the generation of radical ion pairs in relatively polar solvents for both dyads. In nonpolar toluene, only PTZ 1- (3)C 60* was observed for PTZ 1-C 60, whereas PTZ 3- (3)C 60* as well as the radical ion pair state in equilibrium were observed for PTZ 3-C 60. The radical ion pairs had relatively long lifetimes: 60 (DMF) to 910 ns ( o-dichlorobenzene) for (PTZ) 1 (*+)-C 60 (*-) and 230 (PhCN) to 380 ns ( o-dichlorobenzene) for (PTZ) 3 (*+)-C 60 (*-). The small reorganization energy (lambda) and the electronic coupling element (| V|) were estimated by the temperature dependence of the charge-recombination rates, i.e., lambda = 0.53 eV and | V| = 1.6 cm (-1) for (PTZ) 3 (*+)-C 60 (*-).  相似文献   

3.
One representative type of heterocyclic compound that can release a hydride ion is 7,8-dihydro-9-methylcaffeine (CAFH). The one-electron oxidation potential of CAFH [-0.294 (V vs Fc(+/0))] and the one-electron reduction potential of CAF(+) [-2.120 (V vs Fc(+/0))] were obtained using two different methods, CV and OSWV. Applying titration calorimetry data in thermodynamic cycles, the enthalpies of CAFH releasing a hydride ion [57.6 kcal/mol] and releasing a hydrogen atom [80.3 kcal/mol] and of its radical cation CAFH(?+) releasing a proton [33.0 kcal/mol] and releasing a hydrogen atom [38.4 kcal/mol] have been determined. Several conclusions can be drawn from the thermodynamic results: (1) CAFH is a very good single-electron donor whose single-electron oxidation potential is much less positive than that of NAD(P)H model compound BNAH [E(ox) = 0.219 V vs Fc(+/0)]. (2) The single-electron reduction potential of CAF(+) is much more negative than that of BNA(+) [E(red) = -1.419 V], which means that CAF(+) is not a good electron acceptor. Furthermore, CAFH is a very good hydride donor compared to BNAH. The results of non-steady-state kinetic studies, for the reaction of CAFH and AcrH(+)ClO(4)(-), show that the ratio of t(0.50)/t(0.05) is larger than 13.5 and the ratio of k(init)/k(pfo) is larger than 1. The pseudo-first-order rate constants obtained at different reaction stages decrease with the time, and the kinetic isotope was observed to be small at a short reaction time and slowly increases to 3.72 with the progress of the reaction. These kinetic results clearly display that the hydride transfer of CAFH to AcrH(+) in acetonitrile is not a one-step mechanism, while the thermodynamic results show that CAFH is a very good electron donor. The combination of the kinetic results with the thermodynamics analysis shows that the hydride transfer of the caffeine derivative CAFH takes place by a two-step reversible mechanism and there is an intermediate in the reaction.  相似文献   

4.
Catalysis of hydride transfer by hydridic-to-protonic hydrogen (HHH) bonding in α-hydroxy carbonyl isomerization reactions was examined computationally in the lithium salts of 7-substituted endo-3-hydroxybicyclo[2.2.1]hept-5-en-2-ones. The barrier for intramolecular hydride transfer in the parent system was calculated to be 17.2 kcal/mol. Traditional proton donors, such as OH and NH(3)(+), stabilized the metal cation-bridged transition state by 1.4 and 3.3 kcal/mol, respectively. Moreover, among the conformers of the OH systems, the one in which the proton donor is able to interact with the migrating hydride (H(m)) has an activation barrier lower by 1.3 and 1.7 kcal/mol than the other possible OH conformers. By contrast, the presence of an electronegative group such as F, which disfavors the migration electronically by opposing development of hydridic charge, destabilizes the hydride migration by 1.5 kcal/mol relative to the epimeric exo system. In both ground and transition states the H(m)···H distance decreased with increasing acidity of the proton donor, reaching a minimum of 1.58 ? at the transition state for NH(3)(+). Both Mulliken and NPA charges show enhancement of negative character of the migrating hydride in the cases in which HHH bonding is possible.  相似文献   

5.
In this paper, the mechanism of transfer hydrogenation of acetophenone catalyzed by ruthenium-acetamido complex was studied using density function theory (DFT) method. The catalytic cycle of transfer hydrogenation consists of hydrogen transfer (HT) step and dehydrogenation (DH) step of isopropanol (IPA). Inner sphere mechanism (paths 1 and 7) and outer sphere mechanism (paths 2-6) in HT step are fully investigated. Calculated results indicate that DH step of IPA (from (i)1 to (i)2) is the rate-determining step in the whole catalytic cycle, which has a potential energy barrier of 16.2 kcal/mol. On the other hand, the maximum potential energy barriers of paths 1-7 in the HT step are 5.9, 12.7, 24.4, 16.8, 23.7, 7.2, and 6.1 kcal/mol, respectively. The inner sphere pathways (paths 1 and 7) are favorable hydrogen transfer modes compared with outer sphere pathways, and the proton transferred to the oxygen atom of acetophenone comes from the hydroxyl group but not from amino group of acetamido ligand. Those theoretical results are in agreement with experimental report. However, in view of this DFT study in the inner sphere mechanism of HT step, hydride transfer and proton transfer are concerted and asynchronous hydrogen transfer but not a stepwise one, and hydride transfer precedes proton transfer in this case.  相似文献   

6.
The effects of substituents on the temperature dependences of kinetic isotope effect (KIE) for the reactions of the hydride transfer from the substituted 5-methyl-6-phenyl-5,6-dihydrophenanthridine (G-PDH) to thioxanthylium (TX(+)) in acetonitrile were examined, and the results show that the temperature dependences of KIE for the hydride transfer reactions can be converted by adjusting the nature of the substituents in the molecule of the hydride donor. In general, electron-withdrawing groups can make the KIE to have normal temperature dependence, but electron-donating groups can make the KIE to have abnormal temperature dependence. Thermodynamic analysis on the possible pathways of the hydride transfer from G-PDH to TX(+) in acetonitrile suggests that the transfers of the hydride anion in the reactions are all carried out by the concerted one-step mechanism whether the substituent is an electron-withdrawing group or an electron-donating group. But the examination of Hammett-type free energy analysis on the hydride transfer reactions supports that the concerted one-step hydride transfer is not due to an elementary chemical reaction. The experimental values of KIE at different temperatures for the hydride transfer reactions were modeled by using a kinetic equation formed according to a multistage mechanism of the hydride transfer including a returnable charge-transfer complex as the reaction intermediate; the real mechanism of the hydride transfer and the root that why the temperature dependences of KIE can be converted as the nature of the substituents are changed were discovered.  相似文献   

7.
At the 6-311G* level of theory, DFT methods predict that the rearrangement of 1,4-dihydroxy-5-methylpentadienyl cation 1 (R = Me) to protonated trans-3-hydroxy-2-methylcyclopent-4-en-1-one 2, an intermediate step in the Piancatelli reaction or rearrangement of furfuryl carbinols to trans-2-alkyl(aryl)-3-hydroxycyclopent-4-en-1-one, is a concerted electrocyclic process. Energetic, magnetic, and stereochemical criteria are consistent with a conrotatory electrocyclic ring closure of the most stable out,out-1 isomer to afford trans-2. Although the out,in-1 isomer is thermodynamically destabilized by 6.84 kcal mol(-1), the activation energy for its cyclization is slightly lower (5.29 kcal mol(-1) versus 5.95 kcal mol(-1)). The cyclization of the isomers of 1 with the C1-hydroxy group inwards showed considerably higher activation energies than their outwards counterparts. in,out-1, although close in energy to out,out-1 (difference of 1.57 kcal mol(-1)) required about 10 kcal mol(-1) more to reach the corresponding transition structure. The value measured for the activation energy of in,in-1 (17.32 kcal mol(-1)) eliminates the alternative conrotatory electrocyclization of this isomer to provide trans-2. Geometric scrambling by isomerization of the terminal C1--C2 bond of 1 is also unlikely to compete with electrocyclization. The possibility to interpret the 1-->2 reaction as a nonpericyclic cationic cyclization was also examined through NBO analysis, and the study of bond lengths and atomic charges. It was found that the 1-->2 concerted rearrangement benefits from charge separation at the cyclization termini, an effect not observed in related concerted electrocyclic processes, such as the classical Nazarov reaction 3-->4 or the cyclization of the isomeric 2-hydroxypentadienyl cation 5.  相似文献   

8.
Two possible mechanisms of the irreversible inhibition of HIV-1 protease by epoxide inhibitors are investigated on an enzymatic model using ab initio (MP2) and density functional theory (DFT) methods (B3LYP, MPW1K and M05-2X). The calculations predict the inhibition as a general acid-catalyzed nucleophilic substitution reaction proceeding by a concerted SN2 mechanism with a reaction barrier of ca. 15-21 kcal mol(-1). The irreversible nature of the inhibition is characterized by a large negative reaction energy of ca. -17-(-24) kcal mol(-1). A mechanism with a direct proton transfer from an aspartic acid residue of the active site onto the epoxide ring has been shown to be preferred compared to one with the proton transfer from the acid catalyst facilitated by a bridging catalytic water molecule. Based on the geometry of the transition state, structural data important for the design of irreversible epoxide inhibitors of HIV-1 protease were defined. Here we also briefly discuss differences between the epoxide ring-opening reaction in HIV-1 protease and epoxide hydrolase, and the accuracy of the DFT method used.  相似文献   

9.
The stepwise and concerted pathways for the McLafferty rearrangement of the radical cations of butanal (Bu(+)) and 3-fluorobutanal (3F-Bu(+)) are investigated with density functional theory (DFT) and ab initio methods in conjunction with the 6-311+G(d,p) basis set. A concerted transition structure (TS) for Bu(+), (H), is located with a Gibbs barrier height of 37.7 kcal/mol as computed with CCSD(T)//BHandHLYP. Three pathways for the stepwise rearrangement of Bu(+) have been located, which are all found to involve different complexes. The barrier height for the H(gamma) transfer is found to be 2.2 kcal/mol, while the two most favorable TSs for the C(alpha)-C(beta) cleavage are located 8.9 and 9.2 kcal/mol higher. The energies of the 3F-Bu(+) system have been calculated with the promising hybrid meta-GGA MPWKCIS1K functional of DFT. Interestingly, the fluorine substitution yields a barrier height of only 20.5 kcal/mol for the concerted TS, (3F-H). A smaller computed dipole moment, 12.1 D, for (3F-H) compared with 103.2 D for (H) might explain the stabilization of the substituted TS. The H(gamma) transfer, with a barrier height of 4.9 kcal/mol, is found to be rate-determining for the stepwise McLafferty rearrangement of 3F-Bu(+), in contrast to the unsubstituted case. By inspection of the spin and charge distributions of the stationary points, it is noted that the bond cleavages in the concerted rearrangements are mainly of heterolytic nature, while those in the stepwise channels are found to be homolytic.  相似文献   

10.
The acid-functionalized tris-heteroleptic chromophore--donor--acceptor assembly [RuII(bpyCOOH)(bpyCH2PTZ)(bpyCH2MV2+)](PF6)4]4+ (1) (bpyCOOH = 4'-methyl-2,2'-bipyridine-4-carboxylic acid; bpyCH2PTZ = 10-((4'-methyl-2,2'-bipyridin-4-yl)methyl)phenothiazine; bpyCH2MV2+ = 1-((4'-methyl-2,2'-bipyridin-4-yl)methyl)-1'-methyl- 4,4'-bipyridinediium) was synthesized in a one-pot reaction by careful selection of the order of ligand addition to RuCl2(DMSO)4 (DMSO = dimethyl sulfoxide). The success of this method was based upon separation and isolation of 1 from mixtures containing ligand-scrambled products by cation exchange chromatography. Metal-to-ligand charge-transfer (MLCT) excitation in acetonitrile at 464 nm was followed by intramolecular electron transfer to give a redox-separated state [RuII(bpyCOOH)(bpyCH2PTZ.+)(bpyCH2MV.+)]4+ with an efficiency of eta RS = 0.35 +/- 0.05.  相似文献   

11.
Organic molecules possessing intramolecular charge-transfer properties (D-pi-A type molecules) are of key interest particularly in the development of new optoelectronic materials as well as photoinduced magnetism. One such class of D-pi-A molecules that is of particular interest contains photoswitchable intramolecular charge-transfer states via a photoisomerizable pi-system linking the donor and acceptor groups. Here we report the photophysical and electronic properties of the trans to cis isomerization of 1-(pyridin-4-yl)-2-(N-methylpyrrol-2-yl)ethene ligand (mepepy) in aqueous solution using photoacoustic calorimetry (PAC) and theoretical methods. Density functional theory (DFT) calculations demonstrate a global energy difference between cis and trans isomers of mepepy to be 8 kcal mol(-1), while a slightly lower energy is observed between the local minima for the trans and cis isomers (7 kcal mol(-1)). Interestingly, the trans isomer appears to exhibit two ground-state minima separated by an energy barrier of approximately 9 kcal mol(-1). Results from the PAC studies indicate that the trans to cis isomerization results in a negligible volume change (0.9 +/- 0.4 mL mol(-1)) and an enthalpy change of 18 +/- 3 kcal mol(-1). The fact that the acoustic waves associated with the trans to cis transition of mepepy overlap in frequency with those of a calorimetric reference implies that the conformational transition occurs faster than the approximately 50 ns response time of the acoustic detector. Comparison of the experimental results with theoretical studies provide evidence for a mechanism in which the trans to cis isomerization of mepepy results in the loss of a hydrogen bond between a water molecule and the pyridine ring of mepepy.  相似文献   

12.
Oxidations of the NADH analogues 10-methyl-9,10-dihydroacridine (AcrH2) and N-benzyl 1,4-dihydronicotinamide (BNAH) by cis-[RuIV(bpy)2(py)(O)]2+ (RuIVO2+) have been studied to probe the preferences for hydrogen-atom transfer vs hydride transfer mechanisms for the C-H bond oxidation. 1H NMR spectra of completed reactions of AcrH2 and RuIVO2+, after more than approximately 20 min, reveal the predominant products to be 10-methylacridone (AcrO) and cis-[RuII(bpy)2(py)(MeCN)]2+. Over the first few seconds of the reaction, however, as monitored by stopped-flow optical spectroscopy, the 10-methylacridinium cation (AcrH+) is observed. AcrH+ is the product of net hydride removal from AcrH2, but hydride transfer cannot be the dominant pathway because AcrH+ is formed in only 40-50% yield and its subsequent oxidation to AcrO is relatively slow. Kinetic studies show that the reaction is first order in both RuIVO2+ and AcrH2, with k = (5.7 +/- 0.3) x 10(3) M(-1) s(-1) at 25 degrees C, DeltaH(double dagger) = 5.3 +/- 0.3 kcal mol(-1) and DeltaS(double dagger) = -23 +/- 1 cal mol(-1) K(-1). A large kinetic isotope effect is observed, kAcrH2/kAcrD2 = 12 +/- 1. The kinetics of this reaction are significantly affected by O2. The rate constants for the oxidations of AcrH2 and BNAH correlate well with those for a series of hydrocarbon C-H bond oxidations by RuIVO2+. The data indicate a mechanism of initial hydrogen-atom abstraction. The acridinyl radical, AcrH*, then rapidly reacts by electron transfer (to give AcrH+) or by C-O bond formation (leading to AcrO). Thermochemical analyses show that H* and H- transfer from AcrH2 to RuIVO2+ are comparably exoergic: DeltaG degrees = -10 +/- 2 kcal mol(-1) (H*) and -6 +/- 5 kcal mol(-1) (H-). That a hydrogen-atom transfer is preferred kinetically suggests that this mechanism has an equal or lower intrinsic barrier than a hydride transfer pathway.  相似文献   

13.
Heterolytic and homolytic bond dissociation energies of the C4-H bonds in ten NADH models (seven 1,4-dihydronicotinamide derivatives, two Hantzsch 1,4-dihydropyridine derivatives, and 9,10-dihydroacridine) and their radical cations in acetonitrile were evaluated by titration calorimetry and electrochemistry, according to the four thermodynamic cycles constructed from the reactions of the NADH models with N,N,N',N'-tetramethyl-p-phenylenediamine radical cation perchlorate in acetonitrile (note: C9-H bond rather than C4-H bond for 9,10-dihydroacridine; however, unless specified, the C9-H bond will be described as a C4-H bond for convenience). The results show that the energetic scales of the heterolytic and homolytic bond dissociation energies of the C4-H bonds cover ranges of 64.2-81.1 and 67.9-73.7 kcal mol(-1) for the neutral NADH models, respectively, and the energetic scales of the heterolytic and homolytic bond dissociation energies of the (C4-H)(.+) bonds cover ranges of 4.1-9.7 and 31.4-43.5 kcal mol(-1) for the radical cations of the NADH models, respectively. Detailed comparison of the two sets of C4-H bond dissociation energies in 1-benzyl-1,4-dihydronicotinamide (BNAH), Hantzsch 1,4-dihydropyridine (HEH), and 9,10-dihydroacridine (AcrH(2)) (as the three most typical NADH models) shows that for BNAH and AcrH(2), the heterolytic C4-H bond dissociation energies are smaller (by 3.62 kcal mol(-1)) and larger (by 7.4 kcal mol(-1)), respectively, than the corresponding homolytic C4-H bond dissociation energy. However, for HEH, the heterolytic C4-H bond dissociation energy (69.3 kcal mol(-1)) is very close to the corresponding homolytic C4-H bond dissociation energy (69.4 kcal mol(-1)). These results suggests that the hydride is released more easily than the corresponding hydrogen atom from BNAH and vice versa for AcrH(2), and that there are two almost equal possibilities for the hydride and the hydrogen atom transfers from HEH. Examination of the two sets of the (C4-H)(.+) bond dissociation energies shows that the homolytic (C4-H)(.+) bond dissociation energies are much larger than the corresponding heterolytic (C4-H)(.+) bond dissociation energies for the ten NADH models by 23.3-34.4 kcal mol(-1); this suggests that if the hydride transfer from the NADH models is initiated by a one-electron transfer, the proton transfer should be more likely to take place than the corresponding hydrogen atom transfer in the second step. In addition, some elusive structural information about the reaction intermediates of the NADH models was obtained by using Hammett-type linear free-energy analysis.  相似文献   

14.
Six water molecules have been used for microsolvation to outline a hydrogen bonded network around complexes of ethylene epoxide with nucleotide bases adenine (EAw), guanine (EGw) and cytosine (ECw). These models have been developed with the MPWB1K-PCM/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) level of DFT method and calculated S(N)2 type ring opening of the epoxide due to amino group of the nucleotide bases, viz. the N6 position of adenine, N2 position of guanine and N4 position of cytosine. Activation energy (E(act)) for the ring opening was found to be 28.06, 28.64, and 28.37 kcal mol(-1) respectively for EAw, EGw and ECw. If water molecules were not used, the reactions occurred at considerably high value of E(act), viz. 53.51 kcal mol(-1) for EA, 55.76 kcal mol(-1) for EG and 56.93 kcal mol(-1) for EC. The ring opening led to accumulation of negative charge on the developing alkoxide moiety and the water molecules around the charge localized regions showed strong hydrogen bond interactions to provide stability to the intermediate systems EAw-1, EGw-1 and ECw-1. This led to an easy migration of a proton from an activated water molecule to the alkoxide moiety to generate a hydroxide. Almost simultaneously, a proton transfer chain reaction occurred through the hydrogen bonded network of water molecules and resulted in the rupture of one of the N-H bonds of the quaternized amino group. The highest value of E(act) for the proton transfer step of the reaction was 2.17 kcal mol(-1) for EAw, 2.93 kcal mol(-1) for EGw and 0.02 kcal mol(-1) for ECw. Further, the overall reaction was exothermic by 17.99, 22.49 and 13.18 kcal mol(-1) for EAw, EGw and ECw, respectively, suggesting that the reaction is irreversible. Based on geometric features of the epoxide-nucleotide base complexes and the energetics, the highest reactivity is assigned for adenine followed by cytosine and guanine. Epoxide-mediated damage of DNA is reported in the literature and the present results suggest that hydrated DNA bases become highly S(N)2 active on epoxide systems and the occurrence of such reactions can inflict permanent damage to the DNA.  相似文献   

15.
A theoretical study has been carried out on model systems to study a recently reported, (Nature, 2011, 473, 109) biosynthetic, [4 + 2] cycloaddition catalyzed by a stand-alone enzyme (the cyclase SpnF). It was suggested in this paper that SpnF is the first known example of a Diels-Alderase (DA). In the present study, for a model system of the substrate a transition structure was found with density functional calculations (DFT). In addition, the intrinsic reaction coordinate calculations indicated that the transition structure is that of a concerted, but highly asynchronous, DA reaction. Based on the DFT and M?ller-Plesset second order calculations the activation energy was estimated to be about 15 kcal mol(-1). The results of a natural population analysis indicated that there is significant charge transfer in the transition state, and it is proposed that possibly the enzyme plays a dual role of not only folding the substrate into the proper conformation for the DA reaction to occur, but also lowering its activation energy by stabilization of the highly polarized transition structure.  相似文献   

16.
The rates of H/D exchange have been measured between (a) the activated olefins methyl methacrylate-d(5) and styrene-d(8), and (b) the Cr hydrides (eta(5)-C(5)Ph(5))Cr(CO)(3)H (2a), (eta(5)-C(5)Me(5))Cr(CO)(3)H (2b), and (eta(5)-C(5)H(5))Cr(CO)(3)H (2c). With a large excess of the deuterated olefin the first exchange goes to completion before subsequent exchanges begin, at a rate first order in olefin and in hydride. (Hydrogenation is insignificant except with styrene and CpCr(CO)(3)H; in most cases, the radicals arising from the first H. transfer are too hindered to abstract another H. .) Statistical corrections give the rate constants k(reinit) for H. transfer to the olefin from the hydride. With MMA, k(reinit) decreases substantially as the steric bulk of the hydride increases; with styrene, the steric bulk of the hydride has little effect. At longer times, the reaction of MMA or styrene with 2a gives the corresponding metalloradical 1a as termination depletes the concentration of the methyl isobutyryl radical 3 or the alpha-methylbenzyl radical 4; computer simulation of [1a] as f(t) gives an estimate of k(tr), the rate constant for H. transfer from 3 or 4 back to Cr. These rate constants imply a DeltaG (50 degrees C) of +11 kcal/mol for H. transfer from 2a to MMA, and a DeltaG (50 degrees C) of +10 kcal/mol for H. transfer from 2a to styrene. The CH(3)CN pK(a) of 2a, 11.7, implies a BDE for its Cr-H bond of 59.6 kcal/mol, and DFT calculations give 58.2 kcal/mol for the Cr-H bond in 2c. In combination the kinetic DeltaG values, the experimental BDE for 2a, and the calculated DeltaS values for H. transfer imply a C-H BDE of 45.6 kcal/mol for the methyl isobutyryl radical 3 (close to the DFT-calculated 49.5 kcal/mol), and a C-H BDE of 47.9 kcal/mol for the alpha-methylbenzyl radical 4 (close to the DFT-calculated 49.9 kcal/mol). A solvent cage model suggests 46.1 kcal/mol as the C-H BDE for the chain-carrying radical in MMA polymerization.  相似文献   

17.
Excited-state properties of radical cations of substituted oligothiophenes ( nT (*+), n denotes the number of thiophene rings, n = 3, 4, 5) in solution were investigated by using various laser flash photolysis techniques including two-color two-laser flash photolysis. nT (*+) generated by photoinduced electron transfer to p-chloranil or resonant two-photon ionization (RTPI) by using the first 355-nm ns laser irradiation was selectively excited with the second picosecond laser (532 nm). Bleaching of the absorption of nT (*+) together with growth of a new absorption was observed during the second laser irradiation, indicating the generation of nT (*+) in the excited state ( nT (*+)*). The D 1 state lifetime was estimated to be 34 +/- 4, 24 +/- 2, and 18 +/- 1 ps for 3T (*+), 4T (*+), and 5T (*+), respectively. In the presence of hole acceptor (Q), bleaching of nT (*+) and growth of Q (*+) were observed upon selective excitation of nT (*+) during the nanosecond-nanosecond two-color two-laser flash photolysis, indicating the hole transfer from nT (*+)(D 1) to Q. Recovery of nT (*+) was also observed together with decay of Q (*+) because of regeneration of nT (*+) by hole transfer from Q (*+) to nT at the diffusion-limiting rate. It was suggested that the hole transfer rate ( k HT) from nT (*+)(D 1) to Q depended on the free-energy change for hole transfer (-Delta G = 1.41-0.46 eV). The estimated k HT faster than the diffusion-limiting rate can be explained by the contribution of the static quenching for the excited species in the presence of high concentration of Q (0.1-1.0 M).  相似文献   

18.
Studies on the catalytic reaction mechanism of L-lactate dehydrogenase have been carried out by using quantum chemical ab initio calculation at HF/6-31G* level. It is found that the interconversion reaction of pyruvate to L-lactate is dominated by the hydride ion HR- transfer, and the transfers of the hydride ion HR and proton HR are a quasi-coupled process, in which the energy barrier of the transition state is about 168.37 kJ/mol. It is shown that the reactant complex is 87.61 kJ/mol lower, in energy, than the product complex. The most striking features in our calculated results are that pyridine ring of the model cofactor is a quasi-boat-like configuration in the transited state, which differs from a planar conformation in some previous semiempirical quantum chemical studies. On the other hand, the similarity in the structure and charge between the HR transfer process and the hydrogen bonding with lower barrier indicates that the HR transfer process occurs by means of an unusual manner. In addition,  相似文献   

19.
The potential energy profiles for proton-transfer reactions of 2-hydroxypyridine and its complexes with water were determined by MP2, CASSCF and MR-CI calculations with the 6-31G** basis set. The tautomerization reaction between 2-hydroxypyridine (2HP) and 2-pyridone (2PY) does not take place at room temperature because of a barrier of approximately 35 kcal/mol for the ground-state pathway. The water-catalyzed enol-keto tautomerization reactions in the ground state proceed easily through the concerted proton transfer, especially for the two-water complex. The S1 tautomerization between the 2HP and 2PY monomers has a barrier of 18.4 kcal/mol, which is reduced to 5.6 kcal/mol for the one-water complex and 6.4 kcal/mol for the two-water complex. The results reported here predict that the photoinduced tautomerization reaction between the enol and keto forms involves a cyclic transition state having one or two water molecules as a bridge.  相似文献   

20.
The ground-state structure of the charge-transfer complex formed by pyridine (Py) as electron donor and chloranil (CA) as acceptor has been studied by full geometry optimization at the MP2 and DFT levels of theory. Binding energies were calculated and counterpoise corrections were used to correct the BSSE. Both MP2 and DFT indicate that the pyridine binds with chloranil to form an inclined T-shape structure, with the pyridine plane perpendicular to the chloranil. The CP and ZPE corrected binding energies were calculated to be 14.21 kJ/mol by PBEPBE/6-31G(d) and 23.21 kJ/mol by MP2/6-31G(d). The charge distribution of the ground state Py–CA complex was evaluated with the natural population analysis, showing a net charge transfer from Py to CA. Analysis of the frontier molecular orbitals reveals a σ–π interaction between CA and Py, and the binding is reinforced by the attraction of the O7 atom of CA with the H23 atom of Py. TD-DFT calculations have been performed to analyze the UV–visible spectrum of Py–CA complex, revealing both the charge transfer transitions and the weak symmetry-relieved chloranil π–π* transition in the UV–visible region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号