首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heteroleptic neutral tri‐tert‐butoxysilanethiolate of cobalt(II) incorporating ammonia as additional ligand ( 1 ) has been prepared by the reaction of a cobalt(II) ammine complex with tri‐tert‐butoxysilanethiol in water. Complex 1 , dissolved in hexane, undergoes oxidation in an ammonia saturated atmosphere to the ionic cobalt(III) compound 2 . Molecular and crystal structures of 1 and 2 have been determined by single crystal X‐ray structural analysis. 1 forms a dimeric molecule [Co{μ‐SSi(OBut)3}{SSi(OBut)3}(NH3)]2 with a folded central Co2S2 ring and distorted tetrahedral ligand arrangement at both CoII atoms (CoNS3 core). The product 2 is composed of the octahedral CoIII complex cation [Co{SSi(OBut)3}2(NH3)4]+ and the tri‐tert‐butoxysilanethiolate anion. Within the crystal two pairs of ions interact by hydrogen bonds forming well separated entities. 1 and 2 are the first structurally characterized cobalt thiolates where metal is also bonded to ammonia and 2 is the first cobalt(III) silanethiolate.  相似文献   

2.
The title compound, {[Cu(NH3)4][Cu(CN)3]2}n, features a CuI–CuII mixed‐valence CuCN framework based on {[Cu2(CN)3]}n anionic layers and [Cu(NH3)4]2+ cations. The asymmetric unit contains two different CuI ions and one CuII ion which lies on a centre of inversion. Each CuI ion is coordinated to three cyanide ligands with a distorted trigonal–planar geometry, while the CuII ion is ligated by four ammine ligands, with a distorted square‐planar coordination geometry. The interlinkage between CuI ions and cyanide bridges produces a honeycomb‐like {[Cu2(CN)3]}n anionic layer containing 18‐membered planar [Cu(CN)]6 metallocycles. A [Cu(NH3)4]2+ cation fills each metallocyclic cavity within pairs of exactly superimposed {[Cu2(CN)3]}n anionic layers, but there are no cations between the layers of adjacent pairs, which are offset. Pairs of N—H...N hydrogen‐bonding interactions link the N—H groups of the ammine ligands to the N atoms of cyanide ligands.  相似文献   

3.
A new series of CoII tri‐tert‐butoxysilanethiolate complexes with bidentate N,N′‐ligands (L) such as pyrazine, quinoxaline and 4,4′‐bipy was obtained: for pyrazine and quinoxaline the complexes are binuclear {[Co{SSi(tBuO)3}2]2(μ‐L)} with metal atoms linked by an adequate heterocyclic base L. The use of 4,4′‐bipy resulted in a coordination polymer [Co{μ‐SSi(tBuO)3}{SSi(tBuO)3}(μ‐4,4′‐bipy)]n and two polymorphic forms of {[Co{SSi(tBuO)3}2]2(μ‐4,4′‐bipy)}. Pyridyl rings in one polymorph form a torsion angle of 0.57°, whereas a rotation about the linking C–C bond of 4,4′‐bipy in second polymorph is significant and results in a torsion angle of 72.4°. Complexes were analysed and characterised using elemental analysis, solid state IR and UV/Vis spectroscopy, and single‐crystal X‐ray analysis.  相似文献   

4.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XVI [1] Reactions of [g2-{P–PtBu2}Pt(PPh3)2] and [g2-{P–PtBu2}Pt(dppe)] with Metal Carbonyls. Formation of [g2-{(CO)5M · PPtBu2}Pt(PPh3)2] (M = Cr, W) and [g2-{(CO)5Cr · PPtBu2}Pt(dppe)] [η2-{P–PtBu2}Pt(PPh3)2] 4 reacts with M(CO)5 · THF (M = Cr, W) by adding the M(CO)5 group to the phosphinophosphinidene ligand yielding [η2-{(CO)5Cr · PPtBu2}Pt(PPh3)2] 1 , or [η2-{(CO)5W · PPtBu2}Pt(PPh3)2] 2 , respectively. Similarly, [η2-{P–PtBu2}Pt(dppe)] 5 yields [η2-{(CO)5Cr · PPtBu2}Pt(dppe)] 3 . Compounds 1 , 2 and 3 are characterized by their 1H- and 31P-NMR spectra, for 2 and 3 also crystal structure determinations were performed. 2 crystallizes in the monoclinic space group P21/n (no. 14) with a = 1422.7(1) pm, b = 1509.3(1) pm, c = 2262.4(2) pm, β = 103.669(9)°. 3 crystallizes in the triclinic space group P1 (no. 2) with a = 1064.55(9) pm, b = 1149.9(1) pm, c = 1693.2(1) pm, α = 88.020(8)°, β = 72.524(7)°, γ = 85.850(8)°.  相似文献   

5.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXII. The Formation of [η2‐{tBu–P=P–SiMe3}Pt(PR3)2] from (Me3Si)tBuP–P=P(Me)tBu2 and [η2‐{C2H4}Pt(PR3)2] (Me3Si)tBuP–P = P(Me)tBu2 reacts with [η2‐{C2H4}Pt(PR3)2] yielding [η2‐{tBu–P=P–SiMe3}Pt(PR3)2]. However, there is no indication for an isomer which would be the analogue to the well known [η2‐{tBu2P–P}Pt(PPh3)2]. The syntheses and NMR data of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] and [η2‐{tBu–P=P–SiMe3}Pt(PMe3)2] as well as the results of the single crystal structure determination of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] are reported.  相似文献   

6.
The reaction of CuCl, LiAs(SiMe3)2 and dppb (Bis(diphenylphosphino)butane) leads to the formation of ionic cluster complexes. Depending on the reaction conditions one can isolate [Cu8As3(AsSiMe3)2(dppb)4]+[Cu{As2(SiMe3)2}{As4(SiMe3)4}] ( 1 ) and [Cu8As3(AsSiMe3)2(dppb)4]+[Cu{As(SiMe3)2}2] ( 2 ). The same reaction of CuCl, dppm (Bis(diphenylphosphino)methane) and LiSb(SiMe3)2 leads to the neutral cluster complex [Cu10(Sb3)2(SbSiMe3)2(dppm)6] ( 3 ). The structures of 1‐3 have been solved by X‐ray single crystal analyses.  相似文献   

7.
The compound [NH4(NH3)4][Co(C2B9H11)2] · 2 NH3 ( 1 ) was prepared by the reaction of Na[Co(C2B9H11)2] with a proton‐charged ion‐exchange resin in liquid ammonia. The ammoniate 1 was characterized by low temperature single‐crystal X‐ray structure analysis. The anionic part of the structure consists of [Co(C2B9H11)2] complexes, which are connected via C‐H···H‐B dihydrogen bonds. Furthermore, 1 contains an infinite equation/tex2gif-stack-2.gif[{NH4(NH3)4}+(μ‐NH3)2] cationic chain, which is formed by [NH4(NH3)4]+ ions linked by two ammonia molecules. The N‐H···N hydrogen bonds range from 1.92 to 2.71Å (DHA = Donor···Acceptor angles: 136‐176°). Additional N‐H···H‐B dihydrogen bonds are observed (H···H: 2.3‐2.4Å).  相似文献   

8.
A hydrothermal reaction of a mixture of ZnO, HCl, ethylenediphosphonic acid, ethylenediamine, acetic acid in a water, THF mixture gave rise to a new three‐dimensional zinc ethylenediphosphonate, [NH3(CH2)2NH3][Zn3{O3P(CH2)2}4], I . The structure, determined by single crystal X‐ray diffraction, (monoclinic, space group = C2/c, a = 16.9948(14), b = 6.7383(6), c = 16.8886(14)Å, β = 1113.568(1)°, V = 1772.7(3)Å3, Z = 4, R1 = 0.0227, wR2 = 0.0601), consists of a network of strictly alternating ZnO4 and PO3C tetrahedral units linked through their vertices forming the three‐dimensional structure. The amine molecules occupy the middle of the 8‐membered channels and interact with the framework through the hydrogen bonds. Unlike other zinc diphosphonates, I appear to have close similarity to zinc phosphate structures reported in the literature. To our knowledge, this is the first three‐dimensional zinc diphosphonate prepared in the presence of an organic amine molecule.  相似文献   

9.
The reaction of YbCl3 with two equivalents of NaN‐(SiMe3)2 has afforded a mixture of several ytterbium bis(trimethylsilyl) amides with the known complexes [Yb{N(SiMe3)2}2(μ‐Cl)(thf)]2 ( 1 ) and [Yb{N(SiMe3)2}3]( 4 ) as the main products and the cluster compound [Yb3Cl4O{N(SiMe3)2}3(thf)3]( 2 ) as a minor product. Treatment of 1 and 2 with hot n‐heptane gave the basefree complex [Yb{N(SiMe3)2}2(μ‐Cl)]2 ( 3 ) in small yield. The structures of compounds 1—4 and the related peroxo complex [Yb2{N(SiMe3)2}4(μ‐O2)(thf)2]( 5 ) have been investigated by single crystal X‐ray diffraction. In the solid‐state, 3 shows chlorobridged dimers with terminal amido ligands (av. Yb—Cl = 262.3 pm, av. Yb—N = 214.4 pm). Additional agostic interactions are observed from the ytterbium atoms to four methyl carbon atoms of the bis(trimethylsilyl)amido groups (Yb···C = 284—320 pm). DFT calculations have been performed on suitable model systems ([Yb2(NH2)4(μ‐Cl)2(OMe2)2]( 1m ), [Yb2(NH2)4(μ‐Cl)2]( 3m ), [Yb‐(NH2)3]( 4m ), [Yb2(NH24(μ‐O2)(OMe2)2]( 5m ), [Yb{N‐(SiMe3)2}2Cl] ( 3m/2 ) and Ln(NH2)2NHSiMe3 (Ln = Yb ( 6m ), Y ( 7m )) in order to rationalize the different experimentally observed Yb—N distances, to support the assignment of the O—O stretching vibration (775 cm ‐1) in the Raman spectrum of complex 5 and to examine the nature of the agostic‐type interactions in σ‐donorfree 3 .  相似文献   

10.
Investigations of the Synthesis of [CpxSb{M(CO)5}2] (Cpx = Cp, Cp*; M = Cr, W) The reaction of CpSbCl2 with [Na2{Cr2(CO)10}] leads to the chlorostibinidene complex [ClSb{Cr(CO)5}2(thf)] ( 1 ), whereas the reaction of CpSbCl2 with [Na2{W2(CO)10}] results in the formation of the complexes [ClSb{W(CO)5}3] ( 2 ), [Na(thf)][Cl2Sb{W(CO)5}2] ( 3 ), [ClSb{W(CO)5}2(thf)] ( 4 ) and [Sb2{W(CO)5}3] ( 5 ). The stibinidene complex [CpSb{Cr(CO)5}2] ( 6 ) is obtained by the reaction of [ClSb{Cr(CO)5}2] with NaCp, while its Cp* analogue [Cp*Sb{Cr(CO)5}2] ( 7 ) is formed via the metathesis of Cp*SbCl2 with [Na2{Cr2(CO)10}]. The products 2 , 3 , 4 and 7 are additionally characterised by X‐ray structure analyses.  相似文献   

11.
[Ag(NH3)2]+ ions are chosen as an initial reaction precursor because of its simple displacement reaction and intrinsic arrangement as well as specific coordination directionality. Two new silver(I) ammine complexes, Ag2(NH3)HL2 ( 2 ) and Ag2(NH3)2HL3 ( 3 ), were obtained by a simple substitution reaction between [Ag(NH3)2]+ ions and pyridine‐4,5‐imidazoledicarboxylic acid [H3L2 = 2‐(3′‐pyridyl) 4,5‐imidazoledicarboxylic acid and H3L3 = 2‐(4′‐pyridyl) 4,5‐imidazoledicarboxylic acid]. Silver dimers are connected into a 2D layer and 1D chain in complexes 2 and 3 , respectively. In complex 2 two kinds of displacement reactions (mono‐substituting and bis‐substituting) occurred between the ammine molecules in [Ag(NH3)2]+ ions and H3L2, however, only the mono‐substituting reaction occurs in complex 3 .  相似文献   

12.
Anionie Nickel Pseudohalide Complexes of the Types [Ni{N(CN)2}3]? and [Ni{N(CN)2}2(NCS)2]2? The preparation of a new type of anionic pseudohalide complexes of nickel [Ni{N(CN)2}3]? and of mixed thiocyanate-dicyanamide complexes [Ni{N(CN)2}2(NCS)2]2? is reported. The structures of the complexes are discussed on the basis of IR- and magnetic measurements. The new compounds are representing polymer octahedral complexes with a bridging function of the dicyanamide ligands.  相似文献   

13.
Treatment of N‐heterocyclic silylene Si[N(tBu)CH]2 ( 1 ) and [(η3‐C3H5)PdCl]2 in toluene led to the formation of the mononuclear complex (η3‐C3H5)Pd{Si[N(tBu)CH]2}Cl ( 3 ), the silicon analogue to N‐heterocyclic carbene complex (η3‐C3H5)Pd{C[N(tBu)CH]2}Cl ( 2 ). Complex 3 was characterized with 1H NMR and 13C NMR. Investigation shows that (η3‐C3H5)Pd{Si[N(tBu)CH]2}Cl is an active catalyst for Heck coupling reaction of styrene with aryl bromides.  相似文献   

14.
The diorganotin compounds, [Me2Sn{OOP(OBun)2}2] (II), [Me2Sn{OSP(OBun)2}2] (III) and [Me2Sn{SSP(OBun)2}2] (IV), have been investigated by 13C, 31P and 119Sn solution state NMR as well as solid state NMR. On the basis of these studies it is suggested that the phosphate ligand acts in a symmetrical chelating fashion in II, while the ligands behave in an anisobidentate manner in III and IV.  相似文献   

15.
16.
Synthesis and Single Crystal Structure Analysis of [M(NH3)6]C60 · 6 NH3 (M = Co2+, Zn2+) [M(NH3)6]C60 · 6 NH3 (M = Co2+, Zn2+) was synthesized from K2C60 by ion exchange in liquid ammonia. According to single crystal structure analyses the new fullerides are isostructural to the respective Mn, Ni and Cd compounds. The deformation patterns of the C602– anions are similar within this group of compounds. However, there are no indications for significant deformations of the cages as a whole, which could be attributed to a Jahn‐Teller distortion.  相似文献   

17.
Syntheses of Oxovanadium(V) Halide Complexes Stabilized with Tripodal Oxygen Ligands LR = [η5‐(C5H5)Co{PR2(O)}3], R = OMe, OEt The sodium salts of the tripodal oxygen ligands LR = [η5‐(C5H5)Co{PR2(O)}3] (R = OMe, OEt) react with the oxovanadium halides V(O)F3 and V(O)Cl3 to yield deep red compounds of the type [V(O)X2LR]. Halide exchange reactions with [V(O)Cl2LOMe] und [V(O)F2LOMe] aiming at the preparation of the analogous bromide complex [V(O)Br2LOMe] led to the isomer [VO(LOMe)2][V(O)Br4]. The crystal structure of [V(O)Cl2LOMe] has been determined by single crystal x‐ray diffraction. The compound crystallizes in the monoclinic space group P21/n with a = 9.6332(8), b = 15.0312(11) and c = 15.3742(12)Å, β = 100.181(8)°. The coordination around vanadium is distorted octahedral.  相似文献   

18.
The zinc(II) coordination polymer [Zn3(BPT)22‐H2O)2(H2O)2]n · n(DMA) ( 1 ) (H3BPT = biphenyl‐3,4′,5‐tricarboxylic acid, DMA = N,N′‐dimethylactamide) was obtained by the solvothermal reaction of H3BPT with Zn(NO3)2 in DMA/H2O mixed solvent. Single crystal X‐ray analysis reveals that compound 1 has a complicated 3D framework containing linear trinuclear [Zn3(COO)42‐H2O)2] clusters as building subunits, which can be simplified into a (3,6)‐connected rtl topological network with the Schläfli symbol {4.62}2{42.610.83}. The calculated results of total and partial density of states (DOS) indicate that the luminescence of 1 mainly originates from intraligand charge transfer.  相似文献   

19.
A solution of sodium in liquid ammonia reacts with Sb2S3 to form large colorless crystals of the composition Na3SbS3⋅10 NH3. The trigonal‐pyramidal SbS33− anion is ion‐paired with three Na+ counter ions, the coordination spheres of which are completed by eight ammine ligands. The resulting neutral [Na(NH3)3]2[Na(NH3)2]SbS3 molecules crystallize together with two ammonia molecules of solvation in the space group P21/c (a=9.828(2), b=6.0702(4), c=33.4377(6) Å, β=91.362(7)°, V=1994.2(5) Å3, Z=4).  相似文献   

20.
Multifaceted Coordination Chemistry of Vanadium(V): Substitution, Rearrangement Reactions, and Condensation Reactions of Oxovanadium(V) Complexes of the Tripodal Oxygen Ligand LOMe? = [η5‐(C5H5)Co{P(OMe)2(O)}3]? The octahedral oxovanadium(V) complex [V(O)F2LOMe] of the tripodal oxygen ligand LOMe? = [η5‐(C5H5)Co{P(OMe)2(O)}3]? reacts with alcohols and phenol with substitution of one fluoride ligand to form alkoxo complexes [V(O)F(OR)LOMe], R = Me, Et, i‐Prop, Ph. In the presence of water, however, both fluoride ions are substituted and a complex with the composition VO2LOMe can be isolated. The crystal structure shows that the oxo‐bridged trimer [{V(O)(LOMe)O}3] was synthesized. In the presence of BF3 the fluoride ligand in the alkoxo‐complex [V(O)F(OEt)LOMe] can be exchanged for pyridine to yield [V(O)(OEt)pyLOMe]BF4. Analogous attempts to exchange the fluoride ligand for tetrahydrofuran and acetonitrile induces a rearrangement reaction that leads to the vanadium complex [V(O)(LOMe)2]BF4. The crystal structure of this compound has been determined. Its 1H and 31P‐NMR spectra show that it is a highly fluxional vanadium complex at ambient temperature in solution. The two tripodal ligands LOMe? coordinate the vanadium centre as bidentate or tridentate ligands. The exchange bidentate/tridentate becomes slow on the NMR time scale below about 200 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号