首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal Complexes of Biologically Important Ligands, CLVII [1] Halfsandwich Complexes of Isocyanoacetylamino acid esters and of Isocyanoacetyldi‐ and tripeptide esters (?Isocyanopeptides”?) N‐Isocyanoacetyl‐amino acid esters CNCH2C(O) NHCH(R)CO2CH3 (R = CH3, CH(CH3)2, CH2CH(CH3)2, CH2C6H5) and N‐isocyanoacetyl‐di‐ and tripeptide esters CNCH2C(O)NHCH(R1)C(O)NHCH(R2)CO2C2H5 and CNCH2C(O)NHCH(R1)C(O)NHCH (R2)C(O)NHCH(R3)CO2CH3 (R1 = R2 = R3 = CH2C6H5, R2 = H, CH2C6H5) are available by condensation of potassium isocyanoacetate with amino acid esters or peptide esters. These isocyanides form with chloro‐bridged complexes [(arene)M(Cl)(μ‐Cl)]2 (arene = Cp*, p‐cymene, M = Ir, Rh, Ru) in the presence of Ag[BF4] or Ag[CF3SO3] the cationic halfsandwich complexes [(arene)M(isocyanide)3]+X? (X = BF4, CF3SO3).  相似文献   

2.
Halogenation of the potassium or silver salts of bis((trifluoromethyl)sulfonyl)methane(CF3SO2)2CH2 and its cyclo analogues (CF2)nSO2‐CH2SO2CF2 with N‐fluoro‐bis((trifluoromethyl)sul‐fonyl)imine (CF3SO2)2NF, chlorine or bromine gave good yields of the corresponding α‐halo disulfones (CF3SO2)2CHX and (CF2)nSO2CHXSO2CF2 (X: F, Cl, Br; n = 1,2). Some chemical transformations of these fluorinated α‐halo‐disulfones are described. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 147–151, 1999  相似文献   

3.
The reactions of py‐hz ligands ( L1–L5 ) with Pb(CF3SO3)2?H2O resulted in some rare examples of discrete single‐stranded helical PbII complexes. L1 and L2 formed non‐helical mononuclear complexes [Pb L1 (CF3SO3)2]?CHCl3 and Pb L2 (CF3SO3)2][Pb L2 CF3SO3]CF3SO3?CH3CN, which reflected the high coordination number and effective saturation of PbII by the ligands. The reaction of L3 with PbII resulted in a dinuclear meso‐helicate [Pb2 L3 (CF3SO3)2Br]CF3SO3?CH3CN with a stereochemically‐active lone pair on PbII. L4 directed single‐stranded helicates with PbII, including [Pb2 L4 (CF3SO3)3]CF3SO3?CH3CN and [Pb2 L4 CF3SO3(CH3OH)2](CF3SO3)3?2 CH3OH?2 H2O. The acryloyl‐modified py‐hz ligand L5 formed helical and non‐helical complexes with PbII, including a trinuclear PbII complex [Pb3 L5 (CF3SO3)5]CF3SO3?3CH3CN?Et2O. The high denticity of the long‐stranded py‐hz ligands L4 and L5 was essential to the formation of single‐stranded helicates with PbII.  相似文献   

4.
Structures of Bis(trifluoromethyl)halogeno and thiocyanato Mercurates, [Hg(CF3)2X] (X = Br, I, SCN), and a Comparison of the Structural Parameters of the CF3 Groups [(18‐C‐6)K]2[Hg(CF3)2SCN]2 (1) and [P(CH3)(C6H5)3]2[Hg(CF3)2X]2 (X = Br (2) , I (3) ) are prepared and their crystal structures are determined. [(18‐C‐6)K]2[Hg(CF3)2SCN]2 (1) crystallizes in the monoclinic space group P21/c with Z = 2, [P(CH3)(C6H5)3]2[Hg(CF3)2Br]2 (2) in the monoclinic space group P21/n with Z = 2 and [P(CH3)(C6H5)3]2[Hg(CF3)2I]2 (3) in the triclinic space group P1¯ with Z = 1. In the solid state the three compounds form dimeric anions with planar Hg2X2 rings. The structural parameters of the Hg(CF3)2 units in the till now known bis(trifluoromethyl)halogeno mercurates are compared. In all compounds one nearly symmetric and one distorted CF3 group exist. The largest differences of the C—F bond lengths is found for [(18‐C‐6)K][Hg(CF3)2I]. This can be regarded as the experimental evidence for the properties of trifluoromethyl mercury compounds to act as excellent difluorocarbene sources in the presence of alkali iodides.  相似文献   

5.
Trimethylamine‐bis(trifluoromethyl)boranes R(CF3)2B · NMe3 (R = cis/trans‐CF3CF=CF ( 1/2 ), HC≡C ( 3 ), H2C=CH ( 4 ), C2H5 ( 5 ), C6H5CH2 ( 6 ), C6F5 ( 7 ), C6H5 ( 8 )) react with NEt3 × 3 HF depending on the nature of R at 155–200 °C under replacement of the trimethylamine ligand to form the corresponding fluoro‐bis(trifluoromethyl)borates [R(CF3)2BF] ( 1 a/2 a – 8 a ). The structures of 7 , K[C6H5CH2(CF3)2BF] ( K‐6 a ), and K[C6H5(CF3)2BF] ( K‐8 a ) have been investigated by single‐crystal X‐ray diffraction. In 7 the CF3 groups make short repulsive contacts with NMe3 and C6F5 entities – the B–CF3 bonds being unusually long. The B–F bond lengths of K‐6 a and K‐8 a (1.446(3) and 1.452(2) Å, respectively) are long for a fluoroborate.  相似文献   

6.
Crystal structures of organometallic aqua complexes [Cp*RhIII(bpy)(OH2)]2+ ( 1 , Cp* = η5‐C5Me5, bpy = 2,2′‐bipyridine) and [Cp*RhIII(6,6′‐Me2bpy)(OH2)]2+ ( 2 , 6,6′‐Me2bpy = 6,6′‐dimethyl‐2,2′‐bipyridine) used as key catalysts in regioselective reduction of NAD+ analogues were determined definitely by X‐ray analysis. The yellow crystals of 1 (PF6)2 and orange crystals of 2 (CF3SO3)2 used in the X‐ray analysis were obtained from aqueous solutions of 1 (PF6)2 and 2 (CF3SO3)2. The Rh–Oaqua length of 2.194(4) Å obtained for 1 (PF6)2 is significantly different from that of 2.157(3) Å obtained for the previously reported disorder model [Cp*RhIII(bpy)(0.7H2O/0.3CH3OH)](CF3SO3)2·0.7H2O in which the coordinated water is replaced by a coordinated methanol. The five‐membered ring involving the Rh atom and the 6,6′‐Me2bpy chelating unit in 2 (CF3SO3)2 is not flat, whereas the five‐membered chelate ring in 1 (PF6)2 is nearly flat. Such a non‐planar structure in 2 (CF3SO3)2 is ascribed to the steric repulsion between the 6,6′‐Me2bpy ligand and the Cp* ligand. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Novel Neutral and Cationic Mono‐Aziridine Complexes of the Type [CpMn(CO)2Az], [CpCr(NO)2Az]+, and [(Ph3P)(CO)4ReAz]+ via CO‐, Hydride‐, and Chloride‐Elimination Reactions The monoaziridine complexes 1 — 5 are obtained by three differently induced substitution reactions. The photolytically induced CO substitution reaction of [CpMn(CO)3] with 2, 2‐dimethylaziridine leads to the neutral N‐coordinate aziridine complex [Cp(CO)2Mn{$\overline{N(H)CMe2C}$ H2}] ( 1 ). The protonation of [(Ph3P)(CO)4ReH] with CF3SO3H and consecutive treatment with 2, 2‐dimethylaziridine or 2‐ethylaziridine gives the salt‐like aziridine complexes [(Ph3P)(CO)4Re{$\overline{N(H)CMe2C}$ H2}](CF3SO3) ( 2 ) or [(Ph3P)(CO)4Re{ H2}](CF3SO3) ( 3 ) by hydride elimination reactions. The like‐wise salt‐like complexes [Cp(NO)2Cr{$\overline{N(H)CMe2C}$ H2}](BF4) ( 4 ) and [Cp(NO)2Cr{ H2}](CF3SO3) ( 5 ) are synthesized from [CpCr(NO)2Cl] by chloride elimination with AgX (X = BF4, CF3SO3) in the presence of 2, 2‐dimethylaziridine or 2‐ethylaziridine, respectively. As a result of X‐ray structure analyses, the metal atoms are trigonal pyramidally ( 1, 4, 5 ) or octahedrally ( 2, 3 , cis‐position) configurated; the intact three‐membered rings coordinate through the distorted tetrahedrally configurated N atoms. All compounds 1‐5 are stable with respect to the directed thermal alkene elimination to give the corresponding nitrene complexes; the IR, 1H‐ and 13C{1H}‐NMR, and MS spectra are reported and discussed.  相似文献   

8.
The kinetics and mechanism of the reaction of SIV (SO32?+HSO3?) with a ruthenium(VI) nitrido complex, [(L)RuVI(N)(OH2)]+ (RuVIN, L=N,N′‐bis(salicylidene)‐o‐cyclohexyldiamine dianion), in aqueous acidic solutions are reported. The kinetic results are consistent with parallel pathways involving oxidation of HSO3? and SO32? by RuVIN. A deuterium isotope effect of 4.7 is observed in the HSO3? pathway. Based on experimental results and DFT calculations the proposed mechanism involves concerted N?S bond formation (partial N‐atom transfer) between RuVIN and HSO3? and H+ transfer from HSO3? to a H2O molecule.  相似文献   

9.
In aqueous H2SO4, Ce(IV) ion oxidizes rapidly Arnold's base((p-Me2NC6H4)2CH2, Ar2CH2) to the protonated species of Michler's hydrol((p-Me2NC6H4)2CHOH, Ar2CHOH) and Michler's hydrol blue((p-Me2NC6H4)2CH+, Ar2CH+). With Ar2CH2 in excess, the rate law of the Ce(IV)-Ar2CH2 reaction in 0.100 M H2SO4 is expressed -d[Ce(IV)]/dt = kapp[Ar2CH2]0[Ce(IV)] with kapp = 199 ± 8M?1s?1 at25°C. When the consumption of Ce(IV) ion is nearly complete, the characteristic blue color of Ar2CH+ ion starts to appear; later it fades relatively slowly. The electron transfer of this reaction takes place on the nitrogen atom rather than on the methylene carbon atom. The dissociation of the binuclear complex [Ce(III)ArCHAr-Ce(III)] is responsible for the appearance of the Ar2CH+ dye whereas the protonation reaction causes the dye to fade. In highly acidic solution, the rate law of the protonation reaction of Michler's hydrol blue is -d[Ar2CH+]/dt = kobs[Ar2CH+] where Kobs = ((ac + 1)[H*] + bc[H+]2)/(a + b[H+]) (in HClO4) and kobs= ((ac + 1 + e[HSO4?])[H+] + bc[H+]2 + d[HSO4?] + q[HSO4?]2/[H+])/(a + b[H+] + f[HSO4?] + g[HSO4?]/[H+]) (in H2SO4), and at 25°C and μ = 0.1 M, a = 0.0870 M s, b = 0.655 s, c = 0.202 M?1s?1, d = 0.110, e = 0.0070 M?1, f = 0.156 s, g = 0.156 s, and q = 0.124. In highly basic solution, the rate law of the hydroxylation reaction of Michler's hydrol blue is -d[Ar2CH+]/dt = kOH[OH?]0[Ar2CH+] with kOH = 174 ± 1 M?1s?1 at 25°C and μ = 0.1 M. The protonation reaction of Michler's hydrol blue takes place predominantly via hydrolysis whereas its hydroxylation occurs predominantly via the path of direct OH attack.  相似文献   

10.
Preparation and Crystal Structure of Tetramethylammoniumbromide‐Bromine‐Sulfur Dioxide Adduct, [(CH3)4N]+Br�Br2�2SO2 Tetramethylammoniumtribromide forms with sulfur dioxide a salt which is characterized by vibrational spectroscopy and crystal structure analysis. [(CH3)4N]+Br�Br2�2SO2 crystallizes monoclinic in the space group P21/m with a = 657.4(5) pm, b = 2933.0(5) pm, c = 1462.2(5) pm, β = 91.241(5)° and four formula units in the unit cell. The crystal structure possesses bent infinite chains which consist of alternately arranged bromine and bromide ions. The bromide ions are connected to the molecules of bromine and sulfur dioxide by strong interactions forming a three dimensional network.  相似文献   

11.
Chiral Half‐sandwich Pentamethylcyclopentadienyl Rhodium(III) and Iridium(III) Complexes with Schiff Bases from Salicylaldehyde and α‐Amino Acid Esters [1] A series of diastereoisomeric half‐sandwich complexes with Schiff bases from salicylaldehyde and L‐α‐amino acid esters including chiral metal atoms, [(η5‐C5H5)(Cl)M(N,O‐Schiff base)], has been obtained from chloro bridged complexes [(η5‐C5Me5)(Cl)M(μ‐Cl)]2 (M = Rh, Ir). Abstraction of chloride from these complexes with Ag[BF4] or Ag[SO3CF3] affords the highly sensitive compounds [(η5‐C5Me5)M(N,O‐Schiff base]+X? (M = Rh, Ir; X = BF4, CF3SO3) to which PPh3 can be added under formation of [(η5‐C5Me5)M(PPh3)(N,O‐Schiff base)]+X?. The diastereoisomeric ratio of the complexes ( 1 ‐ 7 and 11 ‐ 12 ) has been determined from NMR spectra.  相似文献   

12.
The salts 3‐[(2,2,3,3‐tetrafluoropropoxy)methyl]pyridinium saccharinate, C9H10F4NO+·C7H4NO3S, (1), and 3‐[(2,2,3,3,3‐pentafluoropropoxy)methyl]pyridinium saccharinate, C9H9F5NO+·C7H4NO3S, (2), i.e. saccharinate (or 1,1‐dioxo‐1λ6,2‐benzothiazol‐3‐olate) salts of pyridinium with –CH2OCH2CF2CF2H and –CH2OCH2CF2CF3meta substituents, respectively, were investigated crystallographically in order to compare their fluorine‐related weak interactions in the solid state. Both salts demonstrate a stable synthon formed by the pyridinium cation and the saccharinate anion, in which a seven‐membered ring reveals a double hydrogen‐bonding pattern. The twist between the pyridinium plane and the saccharinate plane in (2) is 21.26 (8)° and that in (1) is 8.03 (6)°. Both salts also show stacks of alternating cation–anion π‐interactions. The layer distances, calculated from the centroid of the saccharinate plane to the neighbouring pyridinium planes, above and below, are 3.406 (2) and 3.517 (2) Å in (1), and 3.409 (3) and 3.458 (3) Å in (2).  相似文献   

13.
Reaction Behaviour of Copper(I) and Copper(II) Salts Towards P(C6H4CH2NMe2‐2)3 ‐ the Solid‐State Structures of {[P(C6H4CH2NMe2‐2)3]CuOClO3}ClO4, {[P(C6H4CH2NMe2‐2)3]Cu}ClO4, [P(C6H4CH2NMe2‐2)3]CuONO2 and [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐2)]CuONO2 The reaction behaviour of P(C6H4CH2NMe2‐2)3 ( 1 ) towards different copper(II) and copper(I) salts of the type CuX2 ( 2a : X = BF4, 2b : X = PF6, 2c : X = ClO4, 2d : X = NO3, 2e : X = Cl, 2f : X = Br, 13 : X = O2CMe) and CuX ( 5a : X = ClO4, 5b : X = NO3, 5c : X = Cl, 5d : X = Br) is discussed. Depending on X, the transition metal complexes [P(C6H4CH2NMe2‐2)3Cu]X2 ( 3a : X = BF4, 3b : X = PF6), {[P(C6H4CH2NMe2‐2)3]CuX}X ( 4 : X = ClO4, 11a : X = Cl, 11b : X = Br, 14 : X = O2CMe), {[P(C6H4CH2NMe2‐2)3]Cu}ClO4 ( 6 ), [P(C6H4CH2NMe2‐2)3]CuX ( 7a : X = Cl, 7b : X = Br, 10 : X = ONO2), [P(C6H4CH2NMe2‐2)2(C6H4CH2NMe2H+NO3‐2)]CuONO2 ( 9 ) and [P(C6H4CH2NMe2‐2)3]CuCl}CuCl2 ( 12 ) are accessible. While in 3a , 3b and 6 the phosphane 1 preferentially acts as tetrapodale ligand, in all other species only the phosphorus atom and two of the three C6H4CH2NMe2 side‐arms are datively‐bound to the appropriate copper ion. In solution a dynamic behaviour of the latter species is observed. Due to the coordination ability of X in 3a , 3b and 6 non‐coordinating anions X are present. However, in 4 one of the two perchlorate ions forms a dative oxygen‐copper bond and the second perchlorate ion acts as counter ion to {[P(C6H4CH2NMe2‐2)3]CuOClO3}+. In 7 , 9 and 10 the fragments X (X = Cl, Br, ONO2) form a σ‐bond with the copper(I) ion. The acetate moiety in 14 acts as chelating ligand as it could be shown by IR‐spectroscopic studies. All newly synthesised cationic and neutral copper(I) and copper(II) complexes are representing stable species. Redox processes are involved in the formation of 9 and 12 by reacting 1 with 2 . The solid‐state structures of 4 , 6 , 9 and 10 are reported. In the latter complexes the copper(II) ( 4 ) or copper(I) ion ( 6 , 9 , 10 ) possesses the coordination number 4. This is achieved by the formation of a phosphorus‐ and two nitrogen‐copper‐ ( 4 , 9 , 10 ) or three ( 6 ) nitrogen‐copper dative bonds and a coordinating ( 4 ) or σ‐binding ( 9 , 10 ) ligand X. In 6 all three nitrogen and the phosphorus atoms are coordinatively bound to copper, while X acts as non‐coordinating counter‐ion. Based on this, the respective copper ion occupies a distorted tetrahedral coordination sphere. While in 4 and 10 a free, neutral Me2NCH2 side‐arm is present, which rapidly exchanges in solution with the coordinatively‐bound Me2NCH2 fragments, this unit is protonated in 10 . NO3 acts as counter ion to the CH2NMe2H+ moiety. In all structural characterized complexes 6‐membered boat‐like CuPNC3 cycles are present.  相似文献   

14.
The reaction of the symmetric diphosphene 2, 4, 6‐(CF3)3‐C6H2‐P=P‐C6H2‐2, 4, 6‐(CF3)3 4 with Ru3(CO)12 led to the 50‐electron Ru3P2 nido‐cluster Ru3(CO)9[μ‐P‐C6H2‐2, 4, 6‐(CF3)3]2 5 , which in solution at room temperature displays hindered rotation of the aromatic rings about the C(aryl)—P bonds. The structure of 5 was determined by X‐ray crystal structure analysis; its Ru3P2 centre forms a distorted square pyramid with one ruthenium atom at the apex. One of the two C6H2(CF3)3 groups is also appreciably distorted. Temperature‐dependent 19F NMR studies of the [A3M3X]2 spin system (A = M = CF3, X = 31P) of 5 indicated a rotational barrier ΔG of 82.3 kJ mol‐1 at 141 °C. The same Ru3P2 core was obtained by the reaction of the unsymmetric diphosphene Mes*‐P=P‐Mes 11 with Ru3(CO)12; hindered rotation about the C(aryl)—P bonds was also observed, in this case.  相似文献   

15.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

16.
Five mono‐nuclear silver(I) complexes with the ligand 2,9‐dimethyl‐1,10‐phenanthroline, namely [Ag(DPEphos)(dmp)]BF4 ( 1 ), [Ag(DPEphos)(dmp)]CF3SO3 ( 2 ), [Ag(DPEphos)(dmp)]ClO4 ( 3 ), [Ag(DPEphos)(dmp)]NO3 ( 4 ), and [Ag(dppb)(dmp)]NO3 · CH3OH ( 5 ) {DPEphos = bis[2‐(diphenylphosphanyl)phenyl]ether, dppb = 1,2‐bis(diphenylphosphanyl)benzene, dmp = 2,9‐dimethyl‐1,10‐phenanthroline} were characterized by X‐ray diffraction, IR, 1H NMR, 31P NMR and fluorescence spectroscopy. Their terahertz (THz) time‐domain spectra were also studied. In these complexes the silver(I), which is coordinated by two kinds of chelating ligands, adopts four‐coordinate modes to generate mono‐nuclear structures. In complexes 1 , 3 – 5 , offset π ··· π weak interactions exist between the neighboring benzene rings. In the 31P NMR spectra, there exist splitting signals (dd), which can be attributed to the coupling of the 107,109Ag–31P. All the emission peaks of these complexes are attributed to ligand‐centered excited states.  相似文献   

17.
A series of [Au2(nixantphos)2](X)2 (nixantphos=4,6‐bis(diphenylphosphino)‐phenoxazine; X=NO3, 1 ; CF3COO, 2 ; CF3SO3, 3 ; [Au(CN)2], 4 ; and BF4, 5 ) complexes that exhibit intriguing anion‐switchable and stimuli‐responsive luminescent photophysical properties have been synthesized and characterized. Depending on their anions, these complexes display yellow ( 3 ), orange ( 4 and 5 ), and red ( 1 and 2 ) emission colors. They exhibit reversible thermo‐, mechano‐, and vapochromic luminescence changes readily perceivable by the naked eye. Single‐crystal X‐ray studies show that the [Au2(nixantphos)2]2+ cations with short intramolecular Au ??? Au interactions are involved as donors in an infinite N?H ??? X (X=O and N) hydrogen‐bonded chain formation with CF3COO? ( 2 C ) and aurophilically linked [Au(CN)2]? counterions ( 4 C ). Both crystals show thermochromic luminescence; their room temperature red ( 2 C ) and orange ( 4 C ) emission turns into yellow upon cooling to 77 K. They also exhibit reversible mechanochromic luminescence by changing their emission color from red to dark ( 2 C ), and orange to red ( 4 C ). Compounds 1 – 5 also display reversible mechanochromic luminescence, altering their emission colors between orange ( 1 ) or red ( 2 ) to dark, as well as between yellow ( 3 ) or orange ( 4 and 5 ) to red. Detailed photophysical investigations and correlation with solid‐state structural data established the significant role of N?H ??? X interactions in the stimuli‐responsive luminescent behavior.  相似文献   

18.
Six new complexes of tin(IV) halides with phosphorus‐containing ligands have been fully characterized by single‐crystal X‐ray diffraction at low temperature. Three of the compounds, derived from the diphosphanes bis‐(diphenylphosphino)methane or bis‐(dicyclohexylphosphino)methane, have a novel zwitterionic structure, with five Cl ligands and one unidentate phosphorus‐containing ligand on tin, together with a proton on the second phosphorus atom of the potentially bidentate ligand; these are Cl5SnP(Ph2)CH2PPh2H+ ( 1 ), Cl5SnOP(Ph2)CH2‐PPh2H+ ( 2 ), and Cl5SnOP(cy2)CH2Pcy2H+ ( 3 ). The other three complexes have a bidentate donor attached to the SnX4 moiety; they comprise Cl4SnOP(Ph2)‐(CH2)2PPh2O ( 4 ), a derivative of bis‐(diphenylphosphino)ethane dioxide, I4SnOP(Ph2)CH2PPh2O ( 5 ), a similar derivative of bis‐(diphenylphosphino)‐methane dioxide, and the very unusual Br4SnAs‐(Ph2)(CH2)2PPh2O ( 6 ), with coordination to tin by As and O. Since the starting material for the last compound was Ph2As(CH2)2PPh2, this result illustrates well the more facile oxidation of P(III) than As(III). © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:136–143, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20525  相似文献   

19.
The behavior of [Fe2(CO)42‐PNPR)(μ‐pdt)] (PNPR=(Ph2PCH2)2NR, R=Me ( 1 ), Ph ( 2 ); pdt=S(CH2)3S) in the presence of acids is investigated experimentally and theoretically (using density functional theory) in order to determine the mechanisms of the proton reduction steps supported by these complexes, and to assess the role of the PNPR appended base in these processes for different redox states of the metal centers. The nature of the R substituent of the nitrogen base does not substantially affect the course of the protonation of the neutral complex by CF3SO3H or CH3SO3H; the cation with a bridging hydride ligand, 1 μH+ (R=Me) or 2 μH+ (R=Ph) is obtained rapidly. Only 1 μH+ can be protonated at the nitrogen atom of the PNP chelate by HBF4?Et2O or CF3SO3H, which results in a positive shift of the proton reduction by approximately 0.15 V. The theoretical study demonstrates that in this process, dihydrogen can be released from a η2‐H2 species in the FeIFeII state. When R=Ph, the bridging hydride cation 2 μH+ cannot be protonated at the amine function by HBF4?Et2O or CF3SO3H, and protonation at the N atom of the one‐electron reduced analogue is also less favored than that of a S atom of the partially de‐coordinated dithiolate bridge. In this situation, proton reduction occurs at the potential of the bridging hydride cation, 2 μH+ . The rate constants of the overall proton reduction processes are small for both complexes 1 and 2 (kobs≈4–7 s?1) because of the slow intramolecular proton migration and H2 release steps identified by the theoretical study.  相似文献   

20.
Synthesis of Monomeric T‐Shaped Silver(I) Halide Complexes – Crystal Structure Analysis of [P(C6H4CH2NMe2‐2)3]AgBr Treatment of the tetrapodal phosphane P(C6H4CH2NMe2‐2)3 ( 1 ) with equimolar amounts of the silver(I) halides AgX ( 2 a : X = Cl, 2 b : X = Br) produces in tetrahydrofuran at 25 °C the monomeric silver(I) complexes [P(C6H4CH2NMe2‐2)3]AgX with planar coordination at the Ag atoms ( 3 a : X = Cl, 3 b : X = Br) in excellent yields. From complex 3 b a single X‐ray crystal structure analysis was carried out. Mononuclear 3 b crystallizes in the monoclinic space group P21/c with the cell parameters a = 14.504(6), b = 11.034(3), c = 17.604(5) Å, β = 102.86(4)°; V = 2746.6(16) Å3; Z = 4; 2953 observed unique reflections, R1 = 0.0805. Complex 3 b consists of monomeric sub‐units with a planar T‐shaped arrangement formed by the atoms Ag1, N1, P1 as well as Br1, whereby the P1–Ag1–Br1 array is almost linear orientated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号